Mobile edge computing has been proposed as a solution for solving the latency problem of traditional cloud computing. In particular, mobile edge computing is needed in areas such as autonomous driving, which requires large amounts of data to be processed without latency for safety. Indoor autonomous driving is attracting attention as one of the mobile edge computing services. Furthermore, it relies on its sensors for location recognition because indoor autonomous driving cannot use a GPS device, as is the case with outdoor driving. However, while the autonomous vehicle is being driven, the real-time processing of external events and the correction of errors are required for safety. Furthermore, an efficient autonomous driving system is required because it is a mobile environment with resource constraints. This study proposes neural network models as a machine-learning method for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the range data measured with the LiDAR sensor. We designed six neural network models to be evaluated according to the number of input data points. In addition, we made an autonomous vehicle based on the Raspberry Pi for driving and learning and an indoor circular driving track for collecting data and performance evaluation. Finally, we evaluated six neural network models in terms of confusion matrix, response time, battery consumption, and driving command accuracy. In addition, when neural network learning was applied, the effect of the number of inputs was confirmed in the usage of resources. The result will influence the choice of an appropriate neural network model for an indoor autonomous vehicle.
Keywords: neural network model; indoor autonomous driving; LiDAR sensor; resource usage; mobile edge computing
|