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Abstract

The performance of data parallel programs suffers from the
latencies caused by the memory access and synchroniza-
tion. These latencies are affected by the grain size and the
scheduling policy for the grains since they influence the mem-
ory reference patterns and the time required for synchroniza-
tion among processors. In this paper, to explore the causes
of these latencies, data parallel programs are experimenting
with varying their grain sizes under two scheduling policies
through execution-driven simulations. From this simulation,
we found the best grain size and scheduling policy for each
simulated parallel programs and analyze the causes inducing
those results�.

1 Introduction

Shared memory multiprocessors are often used for the exe-
cution of parallel programs. Each processor usually accesses
the main memory via its cache memories to fetch the data,
and the workload of parallel programs is partitioned into
many grains based on the grain size chosen by programmers.
However, the grain sizes that ignore caching effects may de-
grade the performance since the address interferences among
the partitioned grains increase cache misses. The schedul-
ing of grains onto processors also affects cache performance
since they exhibit a wide variety of memory reference pat-
terns.

Many parallel programs are usually written using syn-
chronization primitives. In particular, the barrier and spin-
lock primitives are commonly used for synchronization among
processes. The amount of time spent at barriers depends on
the grain size and caching behavior of the partitioned grains.
The waiting time of spin-lock can be decomposed into the
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time for lock contentions and the time to maintain the cache
coherence for the synchronization variable. Scheduling poli-
cies of grains also affects the spin-lock waiting time since the
spin-locks are needed for handling the grain queues.

In this paper, the interaction between grain sizes and the
scheduling policies of grains is examined in data parallel
programs. The simulation results show that the grain sizes
and the scheduling policies selected by programmers have
impacts on the cache behavior and the synchronization la-
tency in tested parallel programs. On the basis of these sim-
ulation studies, we suggest the best grain size and scheduling
policy for each parallel program, and analyze the causes in-
ducing those results.

The paper is structured as follows. Section 2 describes
benchmark data parallel programs used in this study and
their grain sizes and scheduling policies of grains. Section
3 presents the simulation environment used in our study. In
Section 4 we measure the performance of our tested parallel
programs under various grain sizes and scheduling policies,
and analyze their results. In Section 5 related work is pre-
sented. Finally, the conclusion is presented in Section 6.

2 Grain Size and Scheduling Policies on Data Parallel
Programs

The granularity or grain size determines the basic program
segment chosen for parallel processing. Grain sizes are com-
monly described as fine, medium, or coarse, depending on
the computation amount involved. In particular, data parallel
programs operate on large data items and perform identical
processing on data. Since data elements are subject to iden-
tical processing, such programs are parallelized by assign-
ing data elements to processors. Thus, a grain size means
the portion of data items and occupies the contiguous blocks
of memory as much as its size. Furthermore, since parallel
loops carry the reuse of the grains allocated to each proces-
sor, cache locality is important to achieve good performance
on these programs.

In this paper, we choose several grain sizes to maintain
the load balance in benchmark programs. Thus, the coarsest
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grain size is found by dividing the workload of a program
by the number of available processors. Other grain sizes
including the finest grain size are achieved by dividing the
workload by a multiple of the number of processors.

To explore the variation of the memory access patterns
introduced by scheduling policies, the partitioned grains are
executed by static and dynamic scheduling policies between
iterations of a parallel loop. The static scheduling policy
designates the grains to each process before a program is ex-
ecuted. Since the grains allocated to each process are not
changed until the program finishes, cache locality can be
fully exploited. On the other hand, the dynamic scheduling
policy performs scheduling activities to the grains at run-
time. As soon as a process completes the computation of
a grain, the process begins executing the next grain in the
grain queue. The dynamic scheduling improves the proces-
sor utilization because a program uses the available proces-
sors released by other processes during its execution; how-
ever, it results in scheduling overheads to handle the grain
queue and the loss of cache locality. The grain sizes chosen
and scheduling policies respectively induce the spatial and
time variations to the memory reference pattern of data par-
allel programs. These combined variations have impacts on
the cache behavior and synchronization operations of paral-
lel programs.

The three data parallel programs for this study are BMM
(Blocked Matrix Multiplication), FFT(Fast Fourier Trans-
form), LU(LU Decomposition) [1]. These programs show
data parallelism, since they perform identical operations on
all data elements and these elements are assigned to vari-
ous processors to parallelize the computation. In particular,
since these programs do not generate new data elements dy-
namically during the execution, they are easy to evaluate the
performance variations according to the decided grain sizes.
All these programs are written in C and use the synchroniza-
tion and sharing primitives provided by the SGI’s parallel
macros package. All programs are run with eight processes
on eight processors.

2.1 Blocked Matrix Multiplication(BMM)

The BMM is a matrix multiplication based on a blocked al-
gorithm, which is a well-known optimal technique for im-
proving the temporal locality.

1: Procedure BMM(X , Y , Z, N , B) f

2: for(kk = 0; kk �N ; kk += B)f
3: for(jj = 0; jj � N ; jj += B)f
4: for(i = 0; i � N ; i++)f
5: for(k = kk; k � min(kk+B, N ) ; k++)f
6: r = X�i��k�; /* register allocated */
7: for(j = jj; j � min(jj+B, N ) ; j++)
8: Z�i��j� += r * Y �k��j�;
9: g

10: g

11: g

12: barrier; /* only in the dynamic scheduling policy */
13: g

14: g
Example 1: Blocked Matrix Multiplication Algorithm

Matrix YMatrix XMatrix Z

Areas accessed by P7

Grains allocated in P1

Grains allocated in P2
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...
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( Pi denotes the processor labeled i.)

B
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Areas accessed by P1
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Areas accessed by P8 Grains allocated in P8

Figure 1: Data Partitioning and Distribution of the three ar-
rays X , Y , and Z

Primary data structures are three two-dimensional arrays
that execute the matrix multiplication. The Example 1 is the
BMM program code. To multiply two matrices X and Y to
produce Z, a B � B block of matrix Y is repeatedly used
to generate the corresponding data of matrix Z. When all
computation associated with the current block of matrix Y
is finished, the next block is loaded and used similarly. To
parallelized this BMM program, the block size B is to be
used as a grain size for parallel processing. Thus, B � B

blocks in matrix Y are assigned to each processor on the
line 3.

Figure 1 shows that when the static scheduling policy is
used, the memory reference patterns for the three matrices
used and the grains partitioned into eight processors. All B
� B blocks on the matrix Y are executed in parallel. This
Figure shows that each processor accesses its fixed location
on the two matrices Y and Z during the execution. In par-
ticular, the elements of two matrices Y and Z are reused
between the iterations. On the other hand, the elements of
the matrix X are accessed once by all processors during the
execution. Thus, the reuse for the matrices Y and Z play
a significant role in improving cache performance via cache
locality.

On the other hand, when the dynamic scheduling policy
is used, each processor does not access its fixed areas like the
static scheduling policy. When each processor completes a
block, it begins the next block in the grain queue. Due to
this characteristic, the processor utilization increases since
the processors released back to the system immediately par-
ticipate in the remaining work. However, due to data de-
pendence, the barrier primitive should be used whenever a
parallel loop is iterated. Spin lock primitive is allowed to be
used for mutual exclusion to the grain queue.

For our experiments, we use matrices of ��� � ��� el-
ements(1.5 Mbytes in size). The coarsest grain size is a ��
� �� block because the rows of the matrix Y are divided by
eight processors. The finest grain size is a � � � block and
other grain sizes considered are a ��� block, a � � � block
and a ����� block. These grain sizes balance the loads
among processors, since they provide the same number of
blocks with eight processors.
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Figure 2: A snapshot of the FFT program on parallel pro-
cessing

2.2 Fast Fourier Transform(FFT)

The FFT program we have used here is a classic iterative
Cooley-Tukey algorithm for an n point; one-dimensional,
unordered and radix-2 FFT. This program performs logn it-
erations of the most outer loop. Each iteration does n com-
plex multiplications and additions. Primary data structures
are two one-dimensional arrays composed of both a source
point array and a result point array. The next Example 2 is
the FFT program code. The outer loop starting at line 3 is
executed logn times for an n point FFT, and the inner loop
starting at line 7 is executed n times during each iteration of
the outer loop. In every iteration of the outer loop, the array
R is updated using the elements that were stored in the array
S. Line 10 performs a crucial step in the FFT program. This
step updates R�i	 by using S�j	 and S�k	, and also computes
the powers of w known as twiddle factors. Line 7 is the right
position for parallel processing. In this line, the array R is
allocated to each processor according to the index i’s stride
as much as a grain size.

1: Procedure FFT(R, S, n) f
2: r = logn;
3: for(m = 0; m � r � �; m++)f /* outer loop */
4: for(i = 0; i � n� �; i++)f
5: S�i� = R�i�;
6: g
7: for(i = 0; i � n� �; i+grain size)
8: j = (b� . . . bm���bm�� ...br��);
9: k = (b� . . . bm���bm��...br��);
10: R�i� = S�j� + S�k�� w�bmb

m�����b�������� ;
11: g
12: barrier;
13: g
14: g

Example 2: Fast Fourier Transform using the Cooley-Turkey Algo-
rithm

When the static scheduling policy is used, Figure 2 shows
the grains partitioned into eight processors and the iteration
steps of a parallel loop during the execution. As shown in
this Figure, arrays S and R in turn are used as a source
point array or a result point array. Since this program re-
sults in the memory access pattern based on the divide-and-
conquer characteristic, half the data accessed in an iteration
does not reuse in the next iteration. On the other hand, using

the dynamic scheduling policy, it does not fix the areas of
each processor during the execution of the program. In both
scheduling policies, a barrier primitive is used between each
iteration of the outermost loop. The spin-lock primitive to
handle the grain queue is needed in the dynamic scheduling
policy.

For our experiments, we execute FFT on 65536 input
points(1 Mbytes in size). The coarsest grain size is 8092
points, which is achieved by dividing a source point array
by eight processors. The finest grain size is 2 points. Other
grain sizes considered are 4096, 2048, 1024, 512, 128, 64,
32, 16, 8, 4, and 2 points. All grain sizes balance the loads
among all processors, based on the number of partitioned
grains.

2.3 LU Decomposition

This program decomposes matrixA as the product of a lower-
triangular matrix L and an upper-triangular matrix U so that
A 
 L � U . After a pivot row is computed, the remain-
ing rows underneath are modified by this pivot row. During
each iteration, the pivot row gradually moves to the bottom
and the number of remaining rows underneath decreases. As
the computation proceeds in the LU program, the amount of
computation decreases gradually.

To maintain the load balance in this intrinsic property of
the LU program, whenever each iteration of the most outer
loop begins, we recalculate the grain size by dividing the
number of the remaining rows underneath the pivot-row by
the number of processors and a grain divisor defined as a 32-
bit integer variable. Thus, since the number of processors is
fixed in our study, the grain divisor value represents the de-
gree of granularity used in this program. The grain divisors
considered are 1, 2, 3, 4, 5, 6, 7, 8, and 9. As larger grain di-
visors, the finer grain sizes are applied at the remaining rows
underneath the pivot-row. Thus, the finest grain size is grain
divisor 9, and the coarsest grain size is grain divisor 1. For
example, the LU program code is shown in the Example 3.

1: Procedure LU(A, n)f
2: for(k = 0 ; k � n� � ; k++)f /* outer loop */
3: for(j = k+1 ; j � n� � ; j++)
4: A�k� j� = A�k� j� / A�k� k�;
5: for(i = k � � ; i � n� �; i + grain size)f
6: for(j = k � � ; j � n� � ; j++)
7: A�i� j� = A�i� j� - A�i� k�� A�k� j�;
8: g
9: barrier;
10: g
11: g

Example 3: LU Factorization Algorithm

The main data structure is a two-dimensional matrix A
being decomposed. For k varying from 0 to n � �, the LU
program systematically eliminates the values of the row k

from those of the rows k � � to n � � so that the matrix
of coefficients becomes upper-triangular. As shown in this
program, in the kth iteration of the outer loop starting on
line 2, the kth row of matrix A is subtracted from each of
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Figure 3: A snapshot of the LU program on parallel process-
ing

the rows k � � to n � �(loop starting on line 5). A typical
computation of the LU program in the kth iteration of the
outer loop is shown in Figure 3(b), The kth iteration of the
outer loop does not involve any computation on rows 1 to k�
� or columns 1 to k � �. Thus, at this stage, only the lower-
right k � k submatrix of A (the shaded portion in Figure
3(b)) is computationally active. Line 5 is the location for
parallel processing. Since the remaining rows underneath
the pivot row k are active areas, they are allocated to each
processor according to the grain size.

The pivot row’s computation executing on line 2 is a se-
rial component in this program but the amounts of data ac-
cessed and work done per the pivot row decrease gradually.
Thus, spin-lock primitive is used during the computation of
a pivot row. Due to the data dependency between the outer
loops, the barrier primitive is used in both static and dynamic
scheduling policies. It locates on the line 9 of the Example
3.

Figure 3(a) shows the initial partition of a matrix when
the static scheduling is used. Figure 3(b) shows that after
more than half of a matrix is computed, only the remain-
ing rows underneath the pivot row are active and they are
divided into eight processors. As shown in these Figures,
since the remaining rows under the pivot-row are decreased
as the computation proceeds, the number of rows allocated
into each processor is also diminished. For our experiments
we run the LU program with a ���� ���matrix (512 Kbytes
in size).

3 Simulation Environment

3.1 Simulated Multiprocessor

The simulation environment consists of a functional simula-
tor that executes parallel programs and an architectural sim-
ulator that models the shared memory multiprocessor. An ef-
ficient program-drivensimulator, MINT(Mips INTerpreter)[2]
is used as a functional simulator. We construct an architec-
tural simulator based on a multiprocessor with eight proces-
sors and a shared bus-based structure. Each processor is as-
sumed to be a RISC processor with the same cache size and
each instruction is executed in a single cycle except memory
references.

Table 1: Timing Parameters

Events Penalties
(operations) (cycles)

A write on a shared line 3
(The shared lines on other caches are invalidated)
A cache miss 7
(A missed cache line is supplied by an another cache)
A cache miss 22
(A missed cache line is supplied by the main memory)

3.2 Cache Parameters and Timing Considerations

Parallel applications are executed on the various cache struc-
tures including direct-mapped, set associative caches(i.e., 2-
way, and 4-way) with the LRU(Least-Recently-Used) replace-
ment policy. The LRU policy is slightly more effective, but
it is typically more expensive to implement. Set associative
caches decrease cache conflict misses, but they may suffer
from the cost of increased hit times. Hill [3] found about
a 10% difference in hit times for direct-mapped caches ver-
sus 2-way set associative cache and a 12% difference for
4-way set associative cache. In our experiments, the cost of
hit time for set associative caches is not reflected, but the
variations of memory access pattern according to grain sizes
can be explained by the amount of cache misses. The cache
sizes are varied from 32K to 128 Kbytes with the cache line
size of 16 bytes. The simulated cache coherency protocol is
write invalidation scheme [4]. On current microprocessors,
the main memory access-time is about 80 ns, the clock rate
is 250 Mhz(e.g., MIPS R10000, UltraSparc-II) and the sys-
tem bus width is 128 bits. Table 1 shows timing values used
in the cache coherency protocol, based on these parameters
including 1 address cycle and 1 bus operation cycle.

4 Simulation Results

In this section, the performances of parallel programs are
measured across a range of grain sizes on various hardware
configurations(3 kinds of cache structures, 3 kinds of cache
sizes) and the causes of performance variations are analyzed.
The breakdown items of the processor execution time are
composed of the protocol-time, spin-time, barrier-time, miss-
time and computation-time. Protocol-time is the time wasted
in maintaining the cache coherence protocol. Spin-time is
the busy-waiting time due to spin-lock operations. Barrier-
time is the time spent waiting at the barriers. Miss-time is
the time spent waiting for data to be fetched into the cache.
Computation-time is the time spent doing useful work.

4.1 BMM Behavior

Figure 4(a) shows the performances of the BMM program
when it is run under the dynamic and static scheduling poli-
cies across a range of grain sizes. The performances are
measured based on three different cache sizes with the direct-
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Figure 4: BMM : 8 processors, Matrices of ���� ���

mapped structure. The smaller performance differences are
observed on the fine grain sizes between the static and dy-
namic scheduling policy using the same cache size. These
differences result from using synchronization primitives for
the dynamic scheduling policy.

Figure 4(b) shows the breakdown of the processor exe-
cution time achieved by the static and dynamic scheduling
policy on the 32 Kbytes direct-mapped cache. The portion
spent waiting for data due to cache misses is the primary
cause of performance variations on the overall grain sizes.
The block size to be used as a grain size results in a tradeoff
between the effects of the reused data and the cache misses
caused by the block’s own address interference [5]. From the
Figure 4-(b), the grain sizes smaller than a ��� �� block in-
crease the cache misses due to the small amount of reusable
data. On the other hand, the grain sizes larger than a ��� ��
block increase the cache misses caused by the block’s own
address interferences. In particular, when using the dynamic
scheduling policy, the difference of cache misses among pro-
cessors results in higher barrier waiting time, since proces-
sors suffering more cache misses arrive late at barriers.

Figures 4(c) and (d) illustrate varying performances and
memory access latencies achieved when the BMM program
executes on the various cache structures (direct-mapped, 2-
way set associative, 4-way set associative) with a cache size
of 32 Kbytes. These Figures show the performance varia-
tions attributed to the memory access latencies, and that set
associative caches represent a better performance than the
direct-mapped cache under all grain sizes except ��� ��. In
particular, the grain size showing the best performance on set
associative caches is smaller than that of the direct-mapped
cache. The reasons are that not only the set size of set-
associative caches affects the tradeoff between the amount of
reusable data and the cache misses due to a block’s own ad-
dress interference, but also the replacement policy for cache

lines has an impact upon cache performance. As shown in
Figure 4(c), when using set associative caches, the � � �
block results in the best performance in two set associative
caches due to the smallest cache misses as represented in
Figure 4(d).

4.2 FFT Behavior

Figure 5(a) shows the performance levels obtained for three
different cache sizes using the direct-mapped structure and
two scheduling policies across a range of grain sizes. The
performance differences between the dynamic and static schedul-
ing policy are small under all grain sizes except some fine
grain sizes.

Figure 5(b) and (c) show the breakdown of the processor
execution time achieved by the static and dynamic schedul-
ing policies on the 32 Kbytes direct-mapped cache. These
figures show that the miss-time occupies the primary por-
tion of the execution time. In particular, when using the
static scheduling with fine grain sizes, the portions of com-
putation time are higher than those of other grain sizes due
to the overheads for treating fine grain sizes like frequent
function calls. On the other hand, when using the dynamic
scheduling, the spin times on fine grain sizes increase since
the dynamic scheduling policy incurs the frequent grain re-
allocations at run-time.

The barrier waiting times in the FFT program are affected
by the differences of cache misses between the participat-
ing processors and those of the work in the grains, even if
the same number of grains is allocated to each processor.
When using the static scheduling policy, Figure 5(b) shows
that the barrier times at fine grain sizes are higher than those
at coarse grain sizes. The reason is that the use of fine grain
sizes raises the possibility of cache conflict misses due to the
address interference between the grains allocated to the same
processor. Processors that incur few cache misses reach bar-
riers earlier than other processors, therefore, the total barrier
waiting time is increased.

However, when using the dynamic scheduling policy, the
run-time support for the grain reallocation mitigates the dif-
ference of cache conflict misses among the processors. Thus,
Figure 5(c) shows the small amounts of barrier waiting times
under all grain sizes using the dynamic scheduling policy.
On the other hand, the difference of the amount of work
in the partitioned grains is due to the fact that the location
of each grain within the data array affects the calculation
of twiddle factors [1]. Thus, the processors suffering more
computing time for the twiddle factors reach the barriers late.
However, the barrier waiting times are not heavily influenced
by computational imbalances due to the calculation of twid-
dle factors, since the caching effects described above place
bigger impact on the total barrier waiting time.

Figure 5-(d) illustrates the varying performances when
running on the various cache structures (direct-mapped, 2-
way set associative, 4-way set associative) with a cache size
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Figure 5: FFT : 8 processors, 65536 points

of 32 Kbytes. The set associative caches perform better
than the direct-mapped cache due to the reduction of cache
conflict misses. However, since the form of the graphs in-
duced by set associative caches is similar to that of the direct-
mapped cache, the causes of the performance variations un-
der the overall grain sizes can be analyzed by the above ex-
planation for the direct-mapped cache.

4.3 LU Behavior

Figure 6(a) shows the performances of the LU program when
it is run under the dynamic and static scheduling policies
across a range of grain sizes. As described in Section 2, the
larger grain divisors are used, the finer grain sizes are ap-
plied. Thus, the coarsest grain size is the grain divisor 1,
and the finest grain size is the grain divisor 9. The perfor-
mances are measured based on three different cache sizes
with the direct-mapped structure. The performances of the
static scheduling policy are better than those of the dynamic
scheduling policy under all grain sizes.

Figures 6(b) and (c) show the breakdown of the proces-
sor execution time achieved by static and dynamic schedul-
ing policies on the 32 Kbytes direct-mapped cache. These
Figures show that the miss-time is given much weight in the
processor execution time. These results are explained as fol-
lows. After finishing an iteration of the outmost loop, the
LU program performs a synchronization operation at a bar-
rier and moves the current location of the pivot row to the
bottom as much as a row. Since the remaining rows under-
neath the pivot row are reallocated into each processor, using
the static scheduling policy, each processor has one different
row within its grains when compared with the grains used
in the previous iteration. The finer grain size becomes, the
more grains are allocated to each processor, so the total num-
ber of different rows within in the grains increases. These
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Figure 6: LU : 8 processors, a matrix of ���� ���

different rows are the primary causes of the cache misses on
the static scheduling policy. On the other hand, when the
dynamic scheduling policy is used, the grains allocated to
each processor for an iteration are not always identical to
the grains used in the previous iteration. Thus, if the grains
loaded into the cache in the previous iteration are not used,
the first accesses for new grains result in cache misses(i.e.,
compulsory miss). This characteristic is the primary cause
of the cache misses when using the dynamic scheduling pol-
icy.

The uniform spin waiting times of Figure 6(b) come from
the portion of the sequential component executing pivot rows.
On the other hand, the spin waiting time of Figure 6(c) in-
volves both the execution time of these sequential compo-
nents and the lock contention time caused by the spin-lock
primitives that are used in the dynamic scheduling policy.

The barrier waiting time of the LU program depends on
both the difference of cache misses among processors be-
fore reaching the barrier and the intrinsic load imbalance
caused by gradually decreasing workload. Figure 6(c) shows
that the dynamic scheduling policy results in the higher bar-
rier waiting times as the grain size increases. As described
above, using the dynamic scheduling policy, if some pro-
cessors do not reuse the grain loaded into the cache in the
previous iteration, they result in more cache misses than the
other processors. Also, these cache misses increase as the
large grain sizes are used, since they result in the more data
loaded into caches without reuse. Since the processors suf-
fering more cache misses reach the barriers late, the total
barrier waiting times increase proportional to the grain size.

When using the dynamic scheduling policy, cache sizes
also affect barrier waiting times. As shown in Figure 6(a),
program performances are degraded as the cache size is in-
creased under the dynamic scheduling policy. The reason is
that the barrier waiting times are increased as larger caches
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are used by the LU’s own memory reference patterns un-
der the dynamic scheduling policy. According to our exper-
iment, large caches decreased total cache misses, but they
also increased the difference in cache misses between par-
ticipating processors. Thus, this difference resulted in higher
barrier waiting times in large caches.

On the other hand, Figure 6(b) shows that the static schedul-
ing policy produces the higher barrier waiting time in the
fine grain sizes. The reason is that when the static schedul-
ing policy is exploited in fine grain sizes, all processors are
not provided with the exactly same number of grains. Even
using the grain divisors for mitigating this phenomenon, it
would be happened due to the characteristic of the static
scheduling policy designating the grains to each processor
at the compile-time. If some processors are assigned more
number of grains as compared with other processors, they
arrive late at barriers. Furthermore, since fine grain sizes
allocate many small grains to each processor, the address
interference among the grains allocated to the same proces-
sor causes the variability in cache misses among processors.
These causes result in the higher barrier waiting time in the
static scheduling policy using the fine grain sizes.

Figure 6(d) illustrates the performance variations across
a range of grain sizes when the LU program is run on the var-
ious cache structures(direct-mapped, 2-way set associative,
4-way set associative) with a cache size of 32 Kbytes. The
performances of the set associative caches are better than
those of the direct-mapped cache, since the set associative
caches reduce the cache conflict misses. However, when set
associative caches are used, the performance variations is-
sued by two scheduling policies are similar to those of the
direct-mapped cache. Thus, the causes of these performance
variations result from the combined effects of the schedul-
ing and granularity policies, above which are equal to those
under the direct-mapped cache.

In particular, the Figure 6(d) also shows that the 2-way
set associative cache performs better than the 4-way set asso-
ciative cache in several grain sizes using the static schedul-
ing policy. Due to the LU’s own memory reference nature
under these grain sizes and the characteristic of the replace-
ment policy on set associative caches to find victim cache
lines, the 2-way set associative cache can result in smaller
cache misses than the 4-way set associative cache in these
grain sizes.

5 Related Works

Much research has investigated the cache effects and bus
traffic pattern under various parallel programs[6, 7]. These
studies have reported that the data sharing characteristics af-
fected the performance of cache coherency protocol and that
the performance of coherent caches relied on the quantity of
sharing data and locality property in the program. Lam[5]
presented techniques for blocked programs that were used
for reducing the cache misses via improved temporal local-

ity. Several optimizations to improve this performance were
evaluated.

Several previous works have been proposed for operating
system scheduling policies and synchronization primitives[8,
9]. To improve the cache utilization for a given schedul-
ing policy, Torrellas[8] had evaluated several cache affin-
ity scheduling policies on shared memory multiprocessors.
Zahorjan[9] showed that performance was extremely degraded
by the priority scheduling with busy waiting synchroniza-
tion primitives. This study illustrated that the preemptive
scheduling of processors with the use of busy waiting syn-
chronization primitives degraded the performance since the
running processes waited for the preempted processes with
the lock. Tucker[10] suggested the process control approach
focused on the processor utilization. This study addressed
both synchronization and cache problems by partitioning pro-
cessors into groups and dynamically ensuring that the num-
ber of runnable processes of an application matches the num-
ber of processors allocated to it.

McCann [11] suggested using the dynamic processor al-
location policy on the multiprogrammed shared memory mul-
tiprocessors. This study reported that the performance of a
dynamic scheduling policy with the processor reallocation
is superior to that of a static scheduling policy even if the
system overhead due to the processor reallocation increases.
Gupta [12] used the simulations to investigate the relation-
ship between scheduling policies and synchronization prim-
itives and their impact on the system throughput. This study
also reported the impacts of the scheduling strategies on the
caching behavior of the parallel applications. However, the
effects of granularity on parallel applications were not con-
sidered.

In the works described above, the impact of grain size
and scheduling policies on parallel applications were not ex-
amined, though these affect the cache behaviors and syn-
chronization operations of parallel applications.

6 Conclusion

In this paper, we studied the effects of the granularity and
scheduling policies in data parallel programs. We applied
various grain sizes to our benchmark applications and exe-
cuted the partitioned grains on the dynamic and static schedul-
ing policy.

In the BMM program, the grain size greatly affected the
cache miss rates. These cache misses resulted in the perfor-
mance variations across a range of grain sizes. Even if the
synchronization primitives were exploited by the dynamic
scheduling policy, synchronization latencies were not given
much weight in the total execution times. From the exper-
iments, we found that the best grain size depended on the
amount of cache misses varied by the block size chosen.
In particular, set associative caches showed the best perfor-
mance in a smaller grain size than the direct-mapped cache,
since they have the small set size and a different replace-
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ment policy for choosing a victim cache line, as compared
with the direct-mapped cache.

In the FFT program, the performance differences between
the dynamic and static scheduling policy were small across
a range of grain sizes except some fine grain sizes. When
using the fine grain sizes, the dynamic scheduling policy re-
sulted in the high spin-lock time caused by the frequent grain
reallocation at run-time. Since the memory access latencies
due to the cache misses were given much weight in the to-
tal elapsed time, the best performance was achieved on the
static scheduling policy using the coarsest grain size, which
resulted in the smallest cache misses.

In the LU program, the wasted time due to the cache
misses occupied most of the totals elapsed time along with
the overall grain sizes. The best performance was achieved
on the static scheduling using the coarsest grain size, which
incurred fewer cache misses than other grain sizes. Using the
static scheduling policy with the fine grain sizes, the higher
barrier waiting time resulted from the load imbalances and
caching effects among the grains. On the other hand, using
the dynamic scheduling policy with coarse grain sizes, the
higher barrier waiting time resulted from the caching effects
due to the run-time grain reallocation.

Our simulation results showed that combined effects of
the granularity and scheduling policies were taken into ac-
count for the parallel processing, since the interactions be-
tween the granularity and scheduling policies had great im-
pacts on the memory access latency and synchronization la-
tency.
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