
Dissertation for the Degree of Doctor

A Study on Streaming Media Service for
Mobile Clients

by
Dongmahn Seo

Department of Computer and Communications Engineering

Graduate School

Kangwon National University

February, 2010

Under the Guidance of
Professor Inbum Jung

A Study on Streaming Media Service for
Mobile Clients

A DISSERTATION
Submitted to the Graduate School of

Kangwon National University in Partial
Fulfillment of the Requirements

for the Degree of

Doctor of Engineering

by

Dongmahn Seo

Department of Computer Engineering

February, 2010

Approved by Committee of the Graduated School of
Kangwon National University in Partial Fulfillment of

the Requirements for the Degree of
Doctor of Engineering

Dongmahn Seo

December, 2009

Dissertation Committee ;

Inbum Jung (signature)
(Chairman of Committee)

ChangGeun Song (signature)
(Committeeman)

YongSeok Kim (signature)
(Committeeman)

HeonGuil Lee (signature)
(Committeeman)

HarkSoo Kim (signature)
(Committeeman)

A Study on Streaming Media Service
for Mobile Clients

Dongmahn Seo

Department of Computer Engineering

Graduate School, Kangwon National University

Abstract

Based on recently the amazing growth of telecommunication, computer and image

compression technologies, the streaming media service has been spotlighted in many

multimedia applications. In particular, the advancement in wireless network

technologies has enabled the streaming media service on the mobile devices such

as PDAs, laptops, navigation, wireless IP-TV, and mobile phones. The streaming

media have larger and more complex data than the traditional text, picture image

data. Furthermore, since the wireless network has low bandwidth channels and

many mobile devices compose of limited hardware specifications, the streaming

media service for mobile clients is needed to study.

In this dissertation, a integrated transcoding media streaming service system is

proposed in order to provide streaming media service for mobile clients. The

proposed system needs to provide a unstable wireless network-adaptive transcoding

method and a load distribution method and a admission control method for various

clients on server side in order to guarantee QoS to mobile clients using streaming

media service. Furthermore, it is necessary to provide a QoS-guarantee method with

low bandwidth in cell boundary area and frequent hand-over of fast moving clients.

In this dissertation, three methods for streaming media service for mobile clients

are proposed to solve these problems. At first, the Network Adaptive Autonomic

Transcoding Algorithm (NAATA) is proposed to support streaming media service

for mobile clients. The proposed algorithm decides on target transcoding bit-rates in

real-time according to the wireless network state. Since it protects continuous

transmission failures for streaming media data, seamless and stable streaming media

services are provided for mobile clients.

Secondly, a new load distribution method is proposed for fair transcoding load

distribution in the distributed transcoding servers. The proposed method controls and

distributes transcoding requests based on transcoding time estimation for distributed

transcoding environments. In our experiments, the proposed method shows better

scalable performance than other load distribution methods, because the

characteristics of transcoding servers, transcoding requirements and streaming media

data are considered.

Finally, a client mobility-based media stream prefetching method to guarantee

stable QoS in high speed internet environment like a Mobile WiMAX, is proposed.

In proposed method, high speed moving clients is joint a group depending on their

characteristics and provided streaming media service according to a joint group.

Mobile clients can change their group depending on their situation. In each group,

clients' direction is predicted, and media streams are prefetched against disconnect

and latency caused by handover. The proposed method is experimented and

evaluated that buffer state is stable with handover for streaming media service.

Acknowledgement

※ This study is partially supported by “2005 Korea Sanhak Foundation

Scholarship” provided by the Korea Sanhak Foundation.

※ This study is partially supported by “2007 Engineering Graduate School

Research Scholarship” provided by the Korea Science and Engineering

Foundation.

CONTENTS

I. Introduction ·· 1

II. Network-adaptive Autonomic Transcoding Algorithm for Seamless Streaming

Media Service of Mobile Clients ··· 7

1. Motivation ·· 7

2. Related Work ·· 8

2.1. Transcoding System ··· 8

2.2. Network-adaptive QoS Guarantee Methods ·· 9

2.3. Available Network Bandwidth-adaptive Transcoding ································· 11

3. The Network Adaptive Autonomic Transcoding Algorithm (NAATA) ········· 14

3.1. The AIMD congestion control algorithm in TCP ····································· 15

3.2. Characteristics of the NAATA ··· 16

4. Performance Evaluation ·· 21

4.1. Performance of the NAATA ·· 23

4.2. Accumulated Number of Transmission failure ··· 25

4.3. Time Interval between Transmission Failures ·· 27

4.4. Overhead of NAATA and ANAT system ·· 28

5. Summary ·· 29

III. Load Distribution Algorithm Based on Transcoding Time Estimation for

Distributed Transcoding Servers ·· 30

1. Motivation ·· 30

2. Related Work ·· 32

2.1. Transcoding Systems ·· 32

2.2. Load Distribution Methods ··· 33

3. Transcoding Time Estimation Based Load Distribution Method ···················· 35

3.1. Transcoding Time Analysis ·· 35

3.2. Load Distribution and Admission Control ·· 39

3.3. Algorithm ·· 41

4. Experimental Environment ··· 44

5. Performance Evaluation ·· 46

5.1. Transcoding Time Estimation and Measurement ·· 46

5.2. Number of QoS Stream ·· 48

6. Summary ·· 50

IV. Stream Prefetching Method on Streaming Media Service for High Speed

Mobile Users ··· 52

1. Motivation ·· 52

2. Related Work ·· 54

2.1. Mobile WiMAX ··· 54

2.2. Handover in Mobile WiMAX ·· 54

2.3. Mobile IPv6 and Handover ·· 60

2.4. Direction Prediction for Handover ··· 63

2.5. Media Streaming in Mobile Environments ··· 65

3. Prediction of Mobile Client's Movements ··· 66

3.1. Grouping and Characteristics Analysis of Mobile Client's Movements ·· 66

3.2. Prediction of Mobile Client's Direction ·· 68

3.3. Group Changing based on Mobility ·· 72

4. Prefetching Method for Handover ·· 73

4.1. Prefetching before Handover ·· 74

4.2. Prefetching after Handover ··· 74

4.3. Prediction Failure Recovery ·· 75

5. Experimental Results and Analysis ·· 76

5.1. Experimental Environment ·· 76

5.2. Buffer State Analysis ·· 77

6. Summary ·· 81

V. Conclusion and Future Work ··· 83

List of Tables

Table 2-1. Pseudo-code for the IGI Algorithm ·· 12

Table 2-2. Pseudo-code for the ANAT Algorithm ··· 13

Table 2-3. Pseudo-code for the NAATA ··· 20

Table 2-4. Server and Client Hardware Specification ·· 22

Table 2-5. Experiment Media Information ··· 22

Table 3-1. Symbols for equations ··· 36

Table 3-2. VLC pseudo-code in MPEG-2 ··· 37

Table 3-3. The TELD algorithm ··· 42

Table 3-4. Hardware specification of transcoding server ······································· 44

Table 3-5. Media data for experiment ··· 44

Table 4-1. Category for Mobile Clients. ·· 67

Table 4-2. Bandwidth variation according to client's speed. ··································· 76

Table 4-3. Minimum bandwidth and average speed of each transportation. ········· 76

Table 4-4. Media bit-rate of experiment. ··· 77

List of Figures

Figure 1-1. Streaming media services for mobile clients. ······································· 1

Figure 1-2. Load distribution transcoding system. ·· 3

Figure 1-3. Three issues in streaming media service for mobile clients. ··············· 5

Figure 2-1. The NAATA concept using the AIMD. ··· 14

Figure 2-2. Activities in the NAATA. ··· 17

Figure 2-3. Streaming bit-rate of movie 1 with ANATS. ······································· 24

Figure 2-4. Streaming bit-rate of movie 1 with NAATA. ······································ 24

Figure 2-5. Streaming bit-rate of movie 2 with NAATA. ······································ 25

Figure 2-6. Accumulated number of transmission failures. ····································· 26

Figure 2-7. Histogram for time interval between transmission failures. ················ 27

Figure 3-1. Architecture of legacy transcoding system. ··· 32

Figure 3-2. Concept of the TELD method. ··· 40

Figure 3-3. Flow chart of TELD. ··· 43

Figure 3-4. Implemented experimental system architecture. ·································· 45

Figure 3-5. Transcoding time using CIF-like media. ··· 47

Figure 3-6. Transcoding time using SCIF-like media. ··· 47

Figure 3-7. Transcoding time using SQCIF-like media. ·· 47

Figure 3-8. Differential rates between estimated times and measured times. ······· 47

Figure 3-9. The number of QoS clients according to the number ……. ············· 49

Figure 4-1. Successful MS Initiated HO Preparation. ·· 56

Figure 4-2. Successful Network Initiated HO Preparation Phase. ·························· 58

Figure 4-3. State Diagram of Mobile Clients Group. ·· 73

Figure 4-4. Buffer Status of Mobile Client in KTX. ·· 77

Figure 4-5. Buffer Status of Mobile Client in SeMaUl Train. ······························ 78

Figure 4-6. Buffer Status of Mobile Client in Vehicle on Highway. ··················· 78

Figure 4-7. Buffer Status of Mobile Client in MuGungHwa Train. ······················ 79

Figure 4-8. Buffer Status of Mobile Client in Vehicle on City Area. ················· 79

Figure 4-9. Buffer Status of Mobile Client in Subway. ·· 80

Figure 4-10. Buffer Status of Mobile Client in Vehicle on Congested ……. ····· 80

- 1 -

Chapter I

Introduction

Based on recently the amazing growth of telecommunication, computer and image

compression technologies, the streaming media service has been spotlighted in many

multimedia applications. In particular, the advancement in wireless network

technologies has enabled the streaming media service on the mobile devices such

as PDAs, laptops, navigation, wireless IP-TV, and mobile phones. Figure 1-1 shows

various streaming media services and transcoding systems for mobile clients. As

shown as the figure, various kinds of clients are used for streaming media service.

Figure 1-1. Streaming media services for mobile clients.

- 2 -

 The streaming media have larger and more complex data than the traditional

text, picture image data. Thus, the large amount of network traffics and the high

performance computing ability are inevitable to support the QoS streams [1-3].

However, since the wireless network has low bandwidth channels and many mobile

devices compose of limited hardware specifications, the transcoding technology is

needed to adapt the originally encoded MPEG media to the given mobile devices.

The ranges of adaptation include changing the frame rates, bit rates, video sizes

and the re-encoding MPEG I, II media into the MPEG IV.

The transcoding system is usually composed of both the multimedia server with

the originally encoded MPEG media and the transcoding servers to perform the

adapting to the given environment. The multimedia server retrieves the MPEG

media and sends them to the selected transcoding server. The transcoding server

performs the transcoding to original MPEG video and also sustains the streaming

service to the corresponding client. In particular, to provide QoS for clients, it is

inevitable to guarantee streaming media without ceasing and jittering phenomena

[3-5].

As the transcoding systems, there have been several approaches such as the

source based static encoding system, the static transcoding server system, and load

distribution transcoding system [6-8]. In the source based static encoding system,

the server stores the MPEG videos encoded by all client grades. Due to the

absence of on-line overheads for transcoding, this approach takes an advantage on

the side of streaming service. However, it is difficult to prepare encoded videos

that are adapted for all kinds of mobile clients. And also, it has the burden of

storing all encoded grades to the same title MPEG movies.

- 3 -

Figure 1-2. Load distribution transcoding system.

The static transcoding server system chooses the transcoding server close to the

wireless base of clients. In this approach, the specific servers suffer from the heavy

congested transcoding jobs. To address this problem, the load distribution

transcoding system uses the load distribution server. The load distribution server

monitors the loads of transcoding servers. The arrived transcoding jobs are

distributed to transcoding servers based on the load distribution strategies. As

shown as Figure 1-2, the transcoding requests from mobile clients are sent to the

selected transcoding server by the load distribution server.

MPEG media are usually used for streaming media service due to their highest

compression and decompression ratio. On the basis of the characteristics of mobile

clients, the MPEG media streams are classified as several grades. To provide the

streaming service for the various mobile devices, the transcoding server should

adapt original MPEG media to the corresponding client grades. The transcoding

jobs cause the servers to exhaust the high amount of their resources. In particular,

depending on the transcoding grades, the different amounts of CPU, memory and

- 4 -

network bandwidth are consumed in transcoding servers. If the transcoding grades

incurring the high resource consumption are concentrated on specific transcoding

servers, the load imbalance among transcoding servers may occur. In this case, it is

hard to expect the efficient resource utilization of transcoding servers. To address

this problem, the load weight by transcoding grades should be reflected on the load

distribution strategy.

The streaming media have its intrinsic characteristic such as the real time

specification. Within the limited time, if the streaming media cannot be read,

transcoded, sent and decoded in the client terminal, the ceasing and jittering

streaming is displayed on the screen. Thus, the real time requirement for the QoS

means that the transcoding operation should be completed within the limited time

and also the transcoded media can be streamed to clients without ceasing and

jittering events. In addition, it is essential that new transcoding requests have not

negative impact on the QoS of all clients being serviced.

In this dissertation, three issues in streaming media service for mobile clients is

studied for a integrated transcoding media streaming service system as shown as

Figure 1-3. First issue is how to guarantee quality of service (QoS) over wireless

network. Second issue is hot to guarantee QoS for various clients. Last issue is

how to guarantee QoS for fast moving clients.

For first issue, the Network Adaptive Autonomic Transcoding Algorithm

(NAATA) is proposed to support streaming media service for mobile clients. The

proposed algorithm decides on target transcoding bit-rates in real-time according to

the wireless network state. Since it protects continuous transmission failures for

streaming media data, seamless and stable streaming media services are provided

for mobile clients.

- 5 -

Figure 1-3. Three issues in streaming media service for mobile clients.

For second issue, a new load distribution method is proposed for fair transcoding

load distribution in the distributed transcoding servers. The proposed method

controls and distributes transcoding requests based on transcoding time estimation

for distributed transcoding environments. In our experiments, the proposed method

shows better scalable performance than other load distribution methods, because the

characteristics of transcoding servers, transcoding requirements and streaming media

data are considered.

For third issue, a client mobility-based media stream prefetching method to

guarantee stable QoS in high speed internet environment like a Mobile WiMAX, is

proposed. In proposed method, high speed moving clients is joint a group

depending on their characteristics and provided streaming media service according

to a joint group. Mobile clients can change their group depending on their

situation. In each group, clients' direction is predicted, and media streams are

- 6 -

prefetched against disconnect and latency caused by handover.

The rest of this dissertation is organized as follows. In Chapter 2, the Network

Adaptive Autonomic Transcoding Algorithm (NAATA) is proposed to support

streaming media service for mobile clients. We evaluate that the NAATA provides

a more seamless streaming media service for mobile clients, without jittering or

ceasing phenomena. Chapter 3 propose a new load distribution method is proposed

for fair transcoding load distribution in the distributed transcoding servers. We

show that the proposed method provides more linear performance scalability than

other load distribution. In Chapter 4, we propose a client mobility-based media

stream prefetching method to guarantee stable QoS in high speed internet

environment. Finally, conclusions and future works are presented in Chapter 5.

- 7 -

Chapter II

Network-adaptive Autonomic Transcoding Algorithm for

Seamless Streaming Media Service of Mobile Clients

1. Motivation

Based on the recent significant growth of telecommunication, computer, and

image compression technologies, the streaming media service has been spotlighted

in many multimedia applications. In particular, the advances in wireless network

technologies have enabled streaming media service on mobile devices such as

PDAs and cellular phones. Streaming media need larger and more complex data

than the traditional text and image data. Thus, a large network traffic bandwidth

and high performance computing ability are inevitably required to support the

Quality of Service (QoS) streams [1-3,9,10]. However, since wireless networks have

low and unstable bandwidth channels compared to wired networks, and many

mobile devices have limited CPU performance, transcoding technology is needed to

adapt the originally encoded media to the given mobile devices. The range of

adaptations includes changing the frame rates, bit rates, video sizes and compress

format such as re-encoding MPEG Ⅰ, Ⅱ media into MPEG Ⅳ [9,11,12].

Moreover, transcoding of MPEG Ⅳ encoded media data is necessary to provide

QoS guarantee streaming server for mobile clients.

The transcoding system is usually composed of both the multimedia server with

- 8 -

the originally encoded media and the transcoding servers to perform the adaptation

to the given environment. The multimedia server retrieves the media and sends

them to the selected transcoding server. The transcoding server performs the

transcoding original media and also sustains the streaming service to the

corresponding client. In particular, a critical requirement for providing QoS for

clients is to guarantee streaming media quality consistently and without jittering

phenomena.

However, mobile clients work in the wireless network environment, which is

unstable and has low bandwidth compared to wired network. Since the distance

between mobile clients and an Access Point (AP) fluctuates according to the

movement of mobile clients, the available network bandwidth is not kept stable.

Therefore, it is hard to guarantee a stable QoS level and the continuity of media

data in the streaming service for mobile clients.

In this chapter, the Network Adaptive Autonomic Transcoding Algorithm

(NAATA) is proposed to support streaming media service for mobile clients. The

proposed algorithm decides on target transcoding bit-rates in real-time according to

the wireless network state. Since it protects continuous transmission failures for

streaming media data, seamless and stable streaming media services are provided

for mobile clients.

2. Related Work

2.1. Transcoding System

There have been several approaches for transcoding systems, including source

based static encoding system and static transcoding server systems [6,9]. In the

- 9 -

source based static encoding system, the server stores the MPEG videos encoded

by all client grades. Due to the absence of on-line overhead for transcoding, this

approach has an advantage on the streaming service side. However, it is difficult to

prepare encoded videos that are adapted for all kinds of mobile clients. Also, the

method has the disadvantage of storing all encoded client grades to the same

MPEG movies title.

The static transcoding server system chooses the transcoding server closest to the

wireless base of the mobile client. This approach uses the initial state of the

wireless network at the point of client arrival. However, since wireless networks

have variable bandwidths, it is difficult to guarantee the QoS streams in real-time

with this method.

2.2. Network-adaptive QoS Guarantee Methods

The internet does its best to transmit packets among hosts, but it does not

provide any guarantee. In attempting to solve this problem, several methods for

streaming media services that guarantee QoS have been studied. An adaptation

method for server transmission bit-rate based on packet loss information in

Real-time Transport Protocol Control Protocol (RTCP) and using classification of

clients is proposed. This protocol is applied in the streaming media service between

a server and the clients. Especially in the Video-On-Demand (VOD) system with a

Variable Bit Rate (VBR) environment, it is difficult to guarantee the adaptive

bit-rate for QoS, because a special frame may take much larger bits than other

frames. To address this issue, the smooth bit-rate method was proposed in order to

keep stable transmission rates [13,14]. Also previously proposed were the edge

- 10 -

server strategy, packet transmission interval and datagram size control strategy

[14,15]. These methods, however, guarantee the QoS of streaming service with only

the special environment or only with some of the streaming data. However, since

they are not able to reflect the network state in real-time, not only can real-time

multimedia data processing not be supported, but also, it is not possible to provide

a streaming service in fixed low bandwidths.

In order to enable streaming solutions that can adapt to the network state and/or

to the receiver capabilities, systems often rely on network-adaptive media coding

algorithms, or adaptive decoding strategies [16]. These algorithms encode and

packetize the media information under a form that facilitates adaptation to the

network characteristics, expressed in terms of bandwidth variation or packet loss.

Such techniques include for example scalable encoding, efficient bitstream

packetization, error-resilient encoding, and dynamic changes of compressed data

units' dependencies. However scalable encoding approach is quit greedy in terms of

computational complexity, which makes its application quite limited in practice.

And adaptive error protection is difficult to design in scenarios where the loss

behavior is hard to predict, or where the access bandwidth is quite heterogeneous

among clients [16].

Application-layer QoS control techniques are used to deal with dynamically

varying network conditions that can lead to significant data rate variations or

unexpected packet losses [16]. Automatic Repeat reQuest (ARQ) systems use

combinations of timeouts and positive and negative acknowledgments to determine

which packets should be retransmitted. Forward error correction (FEC) means that

redundancy is added to the data so that the receiver can recover from losses or

errors without any further intervention from the sender. However ARQ may not be

- 11 -

appropriate for applications with very tight delay constraints, or in broadcast

scenarios due to the bandwidth explosion phenomenon that arises when the states

of the receivers are not synchronized [16].

Optimized packet scheduling at the application layer takes into account data units'

dependencies and importance for the reconstruction of the media stream at the

receiver when performing transmission decisions for media packets [16,17].

Congestion control further helps in preventing packet loss and reducing delays by

carefully limiting the bandwidth available to the sender. TCP-friendly rate control

(TFRC) provides a lower variation of throughput over time relative to TCP, while

simultaneously allowing for fair sharing of the available bandwidth with competing

TCP flows [16,18,19]. The Datagram Congestion Control Protocol (DCCP) is UDP

to support congestion control [20]. However these methods consider only how to

control network packets. They do not reduce the amount of media data for

steaming service to clients. Since streaming media service has a constraint like a

soft real time service, media data should be arrived at client on time. Therefore

media bit-rate changing method is needed when networks are congested, because

the amount of media data for 1 second is media bit-rate.

2.3. Available Network Bandwidth-adaptive Transcoding

On the wireless network, the network bandwidth between a mobile client and an

AP fluctuates according to the movement of a mobile client. In particular, the

bandwidth of wireless network decreases sharply when jamming or other network

problem occur, or when a mobile client is far from an AP. Legacy transcoding

methods have drawbacks insofar as they do not consider wireless network

- 12 -

bandwidth fluctuations. In order to solve this problem, available network

bandwidth-based transcoding systems were proposed [6,15,21].

2.3.1. Estimation of available network bandwidth

Initial Gap Increasing (IGI) and Packet Transmission Rate (PTR) [15,21] are

algorithms for estimating the end-to-end available network bandwidth. Table 2-1

shows the pseudo-code for the IGI algorithm. The IGI algorithm sends packets to a

receiver to estimate the available network bandwidth. A sender increases the

number of packets continuously until the amount of received packets on the

receiver side is NOT same as that of the sent packets on sender side. When both

sides have the different value, then the turning point has been achieved: the

amount of sent packets just before the turning point is the current available

network bandwidth.

Algorithm IGI
{
 /* initialization */
 probe_num = PROBENUM;
 packet_size = PACKETSIZE;
 gB = GET_GB();
 init_gap = gB / 2;
 gap_step = gB / 8;
 src_gap_sum = probe_num * init_gap;
 dst_gap_sum = 0;
 /* look for probing gap value at the turning point */
 While(!GAP_EQUAL(dst_gap_sum, src_gap_sum)) {
 init_gap += gap_step;
 src_gap_sum = probe_num * init_gap;
 SEND_PROBING_PACKETS(probe_num, packet_size, init_gap);
 dst_gap_sum = GET_DST_GAPS();
 }
 /* compute the available bandwidth using IGI fomula */
 inc_gap_sum = GET_INCREASED_GAPS();
 c_bw = b_bw * inc_gap_sum / dst_gap_sum;
 a_bw = b_bw - c_bw;
}

Table 2-1. Pseudo-code for the IGI Algorithm

- 13 -

2.3.2. Available network bandwidth-adaptive transcoding algorithm

The network bandwidth-adaptive transcoding technology is based on the IGI

algorithm. As mentioned in the above subsection, this algorithm estimates the

available network bandwidth. Table 2-2 shows the Available Network Adaptive

Transcoding (ANAT) algorithm, which controls the transcoding bit-rate according to

the available network bandwidth that is estimated by the IGI algorithm. Since the

ANAT algorithm decides the target transcoding bit-rate by comparing the

transcoding bit-rate with the available network bandwidth, it controls the bit-rate of

streaming media in real-time.

Algorithm ANAT
{
 if (diff_sbyte - diff_rbyte > BIT_DIFF) {
 bit_diff_cnt++;
 } else {
 bit_same_cnt++;
 }
 if(bit_diff_cnt >= BIT_DIFF_COUNT) {
 if(initial state) {
 bit-rate reduction;
 } else if (max_bit_rate == min_bit_rate) {
 bit-rate reduction;
 } else {
 bit-rate reduction;
 }
 } else if (bit_same_cnt >= BIT_SAME_COUNT) {
 tmp = bit-rate to change;
 if(tmp < max_bit_rate && tmp < init_bit_rate) {
 bit-rate modification;
 } else if(tmp >= inin_bit_rate) {
 set bit-rate as init_bit_rate;
 } else if(tmp >= max_bit_rate) {
 set bit-rate as max_bit_rate;
 tmpcnt++;
 if(tmpcnt > threshold) {
 max_bit_rate = init_bit_rate;
 tmpcnt = 0;
 }
 }
 }
}

Table 2-2. Pseudo-code for the ANAT Algorithm

- 14 -

3. The Network Adaptive Autonomic Transcoding Algorithm

(NAATA)

Based on the estimation of available network bandwidth in real-time, the ANAT

algorithm provides a seamless streaming media service for mobile clients with

changing transcoding bit-rates. However the wireless network works on a variable

and low network bandwidth. Thus, the ANAT algorithm causes much overhead in

order to estimate the available network bandwidth. To address this problem, we

propose the NAATA to provide seamless, low overhead streaming media service to

mobile clients.

Figure 2-1. The NAATA concept using the AIMD.

- 15 -

As shown in Figure 2-1, the Experimental System for the NAATA is composed

of the head-end server and the transcoding server. The head-end server receives

user requests and controls the transcoding server. The transcoding server transcodes

media data and provides streaming media services.

The transcoding server is composed a streaming module, a transcoding module

and a NAATA module. The NAATA module checks transmission failures and

decides on a transcoding target bit-rate for a corresponding mobile client. The

transcoding target bit-rate is sent to the transcoding module. The transcoding

module reads media data from storage devices and transcodes media data according

to the transcoding target bit-rate. After that, it sends transcoded media data to the

streaming module. The streaming module transmits the received transcoded media

data to a client.

The NAATA uses the Additive Increase, Multiplicative Decrease (AIMD), which

avoids continuous transmission failures in Transmission Control Protocol (TCP).

This algorithm controls the transcoding bit-rate autonomically when a transmission

failure occurs between a server and a client. The NAATA compares the number of

transmitted packets on a server with the number of received packets on a client. If

the number of received packets is below the threshold value, the NAATA changes

the transcoding bit-rate. Therefore, although the wireless network bandwidth is

varied, the NAATA provides a seamless streaming media service.

3.1. The AIMD congestion control algorithm in TCP

The AIMD is a part of the congestion control algorithm in TCP [22,23]. When

packet losses occur, a transmitter reduces the send rate exponentially. After that,

- 16 -

the transmitter increases the send rate linearly. Since other TCP connections in the

same congested router also suffer from the packet loss, these connections decrease

their transmission rate by reducing the size of congestion window. As a result, the

load of the congested router can be decreased by senders.

3.2. Characteristics of the NAATA

3.2.1. Operating behavior

To reflect media data characteristics, the NAATA is implemented with the

modified AIMD. The NAATA checks the amount of transmitted/received data in

each server/client and determines transmission failure. It checks the amount of

transmission media data periodically: if the difference between the data received by

the client and the data transmitted by the server is bigger than the threshold, the

NAATA determines that a transmission problem has occurred on the network. The

threshold value can be decided on operating time. When the threshold value is

getting bigger, a possibility of transmission failure detection is getting lower. If the

threshold value is too big, transmission failures are not detected. If 0, every

transmission failures are detected. In this chapter, zero is used for the threshold

value.

If a transmission failure is detected, the NAATA reduces the media data to

transmit as half of the current streaming bit-rate. It uses the fast recovery method

of the AIMD. If a transmission failure is not detected, the NAATA recovers the

bit-rate linearly by using the slow start method. Until the streaming media bit-rate

reaches the initial bit-rate, the streaming service is sustained at a level between the

maximum service available bit-rate and the minimum service available bit-rate.

- 17 -

Figure 2-2. Activities in the NAATA.

Figure 2-2 shows an applied example of the NAATA. The x axis indicates the

timeline of user requests; the y axis shows streaming bit-rates. In this example, a

user request bit-rate is 200 Kbps. Thus, the initial bit-rate of the NAATA is also

200 Kbps. The maximum and minimum bit-rates are upper and lower bounds of

the target transcoding bit-rate in the current stage as decided by the current state

of the network. Point A of Figure 2-2 is the point at which the first transmission

failure is found. After the failure, the streaming bit-rate is set to 100 Kbps. It is

half of the maximum bit-rate of 200 Kbps. After the streaming bit-rate is changed,

the recovery of the bit-rate may not be accepted immediately. From this point, the

maximum bit-rate and the minimum bit-rate are both set to 100 Kbps.

Point B of Figure 2-2 shows what happens in the case of a continuous

transmission failure. In this case, the streaming bit-rate is changed to 50 Kbps. It

is half of the minimum bit-rate of 100 Kbps. Subsequently, the minimum bit-rate is

- 18 -

set with the streaming media bit-rate at 50 Kbps.

Point C in Figure 2-2 represents the point at which no transmission failure

occurs after the reduction of service bit-rate, for a period of time longer than the

pre-defined threshold time. At point C, the streaming bit-rate is increased. If the

bit-rate reaches 100 Kbps (Point D), the previous transmission failure position, it is

necessary to watch and wait to see whether another transmission failure will occur

at the previous transmission failure bandwidth. For the reason, the streaming media

bit-rate is held and kept, the minimum bit-rate is set with the maximum bit-rate at

100 Kbps and the maximum bit-rate is set with the initial bit-rate at 200 Kbps.

Point E one can see that, after the service bit-rate was held, no transmission

failure occurred that lasted for a longer period of time than the pre-de¯ned

threshold time. At Point E, the streaming bit-rate is increased. When the bit-rate

reaches the initial bit-rate of 200 Kbps (Point F), it is fixed as the initial bit-rate

of 200 Kbps.

The failure of Point G differs from that of Point A and B. In the case of G,

since the maximum bit-rate is the current streaming bit-rate of 200 Kbps, and since

the minimum bit-rate is 100 Kbps, the streaming bit-rate is changed to 150 Kbps.

This is a median value between the maximum bit-rate and the minimum bit-rate.

Point H is similar to the case of Point C and Point I is the same as Point F.

3.2.2. Algorithm

Table 2-3 shows the pseudo-code for the NAATA. Part A of Table 2-3 shows

the variables that are used in the algorithm. The target_tr_bit is the current bit-rate

of streaming media service. The target_tr_bit is set with the value of other

- 19 -

variables. The init_bit denotes the initial requested bit-rate by the user, and the

max_bit and the min_bit represent the maximum bit-rate and the minimum bit-rate

of the current streaming service, respectively. Therefore the target_tr_bit is between

the max_bit and the min_bit like upper bound and lower bound. The tmp is used

to check whether a change of the target_tr_bit is possible. The flag is in order to

record whether the continuous transmission failures happen or not. The

threshold_time indicates the threshold time to recover target bit-rate and the

threshold_fail represents threshold to detect transmission failure. The count indicates

the elapsed time after changing the target_tr_bit and it preserves the threshold time.

The NAATA has two stages: the first is a "transmission failure stage" and the

second is a "no failure stage".

Part B of Table 2-3 shows three kinds of methods for addressing the

transmission failures. The first method is when the first transmission failure occurs;

the second method is for when the continuous transmission failure occurs and

before the recovery of bit-rate proceeds. The third method treats the other failures.

Part B-1 of Table 2-3 shows the case that the first transmission failure occurs. In

case of B-1, the target_tr_bit is set with a half of the init_bit, and then the

max_bit and the min_bit are changed by target_tr_bit. Part B-2 of Table 2-3 shows

the case of that the continuous transmission failures occur. In case of B-2, since

the min_bit is equal to the max_bit, the target_tr_bit is changed with half of

max_bit. The other cases are shown in the part B-3 of Table 2-3. Since the

min_bit and the max_bit are different, the target_tr_bit is changed with the medium

value between the min_bit and the max_bit.

- 20 -

NAATA(int sentByte, int RcvByte) {
 static int init = 1; // initial state flag
 static int init_bit; // initial bit-rate (user requested bit-rate)
 static int min_bit; // minimum bit-rate
 static int max_bit; // maximum bit-rate
 static int tmp; // temporal target bit-rate
 static int target_tr_bit; // target bit-rate
 static int count; // time count
 static int flag = 0; // flag for continous problem
 static int threshold_time = 10; // threshold time to recover target bit-rate
 int threshold_fail = 0; // threshold to detect transmission failure
 int diff = sentByte - RcvByte;
 if(diff > threshold_fail) { // when transmission failure occurs
 if(init) { // when first transmission failure occurs
 target_tr_bit = init_bit / 2;
 min_bit = max_bit = target_tr_bit;
 init = 0;
 } else if(flag == 1) { // when continuous transmission failure occurs
 target_tr_bit = max_bit / 2;
 min_bit = 0;
 threshold_time += 10;
 } else { // when the other transmission failure occurs
 target_tr_bit = (max_bit+min_bit)/2;
 min_bit = target_tr_bit;
 threshold_time += 10;
 }
 flag = 1; // transmission failure occurred
 count = 0;
 } else { // when no transmission failure occurs
 flag = 0; // no transmission failure
 tmp = target_tr_bit + increased bit-rate; // calculate temporal target bit-rate
 if(tmp < max_bit && tmp < init_bit){
 // when tmp is less than maximum bit-rate and initial bit-rate
 target_tr_bit = max_bit = tmp;
 } else if(tmp >= init_bit) { // when tmp is same as initial bit-rate
 target_tr_bit = init_bit;
 count++;
 if(count>=threshold_time) { // when count is greater than threshold
 min_bit = 0;
 threshold_time -= 10;
 count = 0;
 }
 } else if(tmp >= max_bit) { // when tmp is greater than bandwidth
 target_tr_bit = max_bit;
 count++;
 if(count>=threshold_time) { // when count is greater than threshold
 min_bit = max_bit;
 max_bit = init_bit;
 count = 0;
 threshold_time -= 10;
 }
 }
 }

 return target_tr_bit;
}

A

B

1

2

3

C

1

2

3

Table 2-3. Pseudo-code for the NAATA

Part C of Table 2-3, three kinds of methods are shown for recovering the

dropped bit-rate after failures are detected. The tmp is the sum of the target_tr_bit

- 21 -

and the increased bit-rate. Part C-1 shows that the tmp is smaller than the max_bit

and the init_bit. In this case, the target_tr_bit and the max_bit are changed with

tmp for recovery service bit-rate. Part C-2 shows that the tmp is bigger than the

init_bit. In this case, the target_tr_bit is fixed as the init_bit, because the init_bit is

the user requested bit-rate and users do not need a higher service bit-rate than the

user requested bit-rate. Furthermore, if the service network is continuously stable,

the count exceeds the pre-defined threshold time. In that case, as the min_bit is

changing to 0, the streaming service is recovered to the initial state.

Part C-3 shows that the tmp is bigger than the max_bit. In this case, the

streaming service suffered from the transmission failures during the previous

time-line. The target_tr_bit is fixed as the max_bit, and the traffic state for

streaming service will be checked again for a limited period. If the service network

is continually stable, the count exceeds the pre-defined threshold time. In that case,

as the min_bit is changing to the max_bit and the max_bit is changing to the

init_bit, the streaming service jumps to the previous bit-rate level suffering a

failure.

4. Performance Evaluation

This section shows the performance of the NAATA. We compare the NAATA

with the ANAT algorithm and legacy transcoding method. In order to evaluate the

performance of the NAATA, three experimental metrics are identified: 1) the

number of transmission failures; 2) the average time interval among transmission

failures; and, 3) the overhead.

In order to evaluate the performance of the NAATA, the ANAT algorithm is

- 22 -

also implemented based on the IGI algorithm. In the ANAT method, an estimation

module, based on the IGI algorithm, estimates the available network bandwidth [15,

21]. This module also sets the transcoding target bit-rate according to the available

network bandwidth, and sends the bit rate to a transcoding module. A client also

has an IGI client module to cooperate with the ANAT estimation module.

Every module in each server is implemented using C language. The ffmpeg and

the ffserver are modified and applied to the transcoding module and the streaming

module, respectively [24]. The mplayer is modified and applied to the client

programs [25].

Table 2-4 shows the hardware specification for the server and the client. Table

2-5 shows information about the media used in the experiment. Real network

environments with IEEE 802.11 b and g are used for experiments.

Server Mobile Client 1 Mobile Client 2

CPU AMD Athlon MP
2200+ 1.8GHz

Intel Pentium 4
Mobile 1.8GHz

Intel Xscale PXA270
416MHz

Memory 1 GB 768MS 16MB flash, 64MB
SDRAM

Network 100Mbps fast ethernet IEEE 802.11 b/g IEEE 802.11b
Linux Kernel 2.6.9-71 2.6.9-34 2.4.24

Table 2-4. Server and Client Hardware Specification

Bit-rate Frame-rate Resolution
Movie 1 871.7 Kbps 23.97 fps 576 × 256
Movie 2 760.6 Kbps 23.97 fps 640 × 304

Table 2-5. Experiment Media Information

- 23 -

4.1. Performance of the NAATA

Figure 2-3 shows the streaming bit-rates of movie 1 as served by the ANATS

and Figure 2-4 and 2-5 show the streaming bit-rates of movies 1 and 2 as served

by the NAATA. The streaming media bit-rate in Figure 2-4 and 2-5 are changed

in real-time according to the network states as these fluctuate by client movement

or because of variable mobile environments. As shown in Figure 2-3, 2-4 and 2-5,

both initial bit-rates are 200 Kbps. When the first transmission failure occurs, the

streaming bit-rate is changed to 100 Kbps in Figure 2-4 and 2-5. However the

streaming media bit-rate in Figure 2-3 is very unstable and lower than in the

NAATA.

The middle parts of the two figures show dynamic bit-rate adaptations between

the maximum bit-rate and the minimum bit-rate as decided by the current state of

the network. When a transmission failure occurs, the streaming bit-rate is changed

to a median value between minimum bit-rate and maximum bit-rate. After that, the

bit-rate can recover linearly according to the network's degree of stability. We

could see that the network is not good enough to support streaming service from

1400 to 2100 seconds in the Figure 2-4, because target bit-rate is dropped from

200 Kbps to 100 Kbps or less. Instead of bit-rate dropping, re-buffering could be

considered for streaming media service in that period. If re-buffering is worked,

user should wait a few seconds at least 4 times, because there are 4 transmission

failures at least in that period. However more transmission failures could be

occurred when target bit-rate is 200 Kbps. Because target bit-rate is between 130

Kbps and 60 Kbps in that period. Therefore user should wait a few seconds for

streaming media service more than 4 times in 700 seconds (approx. 11 minutes). It

means that user should be patient every 2 or 3 minutes. However the NAATA

- 24 -

supports seamless streaming media server without any re-buffering.

Figure 2-3. Streaming bit-rate of movie 1 with ANATS.

Figure 2-4. Streaming bit-rate of movie 1 with NAATA.

- 25 -

Figure 2-5. Streaming bit-rate of movie 2 with NAATA.

As shown in Figure 2-4 and 2-5, we can confirm that the NAATA serves a

seamless streaming media service with dynamic bit-rate adaptation. Although the

quality of play media drops due to the low bit-rate, it is better than the jittering

and ceasing phenomena of media streaming. If the streaming bit-rate is kept as the

initial bit-rate in the poor network bandwidth environment, the jittering and ceasing

phenomena cannot be avoided.

4.2. Accumulated Number of Transmission failure

Figure 2-6 shows the accumulated number of transmission failures in the

NAATA, the ANAT system and the legacy transcoding system. Various wireless

network states are created for near-real service environments as mobile clients

change their locations.

- 26 -

Figure 2-6. Accumulated number of transmission failures.

In the legacy transcoding system, many transmission failures are discovered and

streaming service jittering and ceasing events appear. The ANAT system has fewer

transmission failures than the legacy transcoding system. Since the ANAT system

changes streaming bit-rates with the estimated available network bandwidth, a

network-adaptive streaming is possible. However, as shown in Figure 2-6, periodic

transmission failures continue to exist and jittering and ceasing phenomena also

show up.

Otherwise, the NAATA results in reduced transmission failures of about 80%

compared with the legacy transcoding system and of about 40% compared with the

ANAT system. Furthermore, the NAATA avoids not only the continuous

transmission failures but also the periodic transmission failures. Given these reliable

results, the NAATA provides more seamless streaming media service than others.

- 27 -

4.3. Time Interval between Transmission Failures

Figure 2-7 shows the time intervals between transmission failures in the NAATA

and the ANAT system. In the ANAT system, almost all of the time intervals are

less than 100 seconds, with a normal distribution and with a mean of 60 seconds.

Thus, transmission failures occur every 1 minute on mobile clients. This indicates

that the jittering and ceasing events of streaming media occur every minute.

0 100 200 300 400 500 600 700 800 9001000
0

2

4

6

8

10

T
h
e
 n

u
m

b
e
r
o
f

F
a
u
lt
s

Time Interval (Second)

 ANAT System
 NAATS

Figure 2-7. Histogram for time interval between transmission failures.

However, the proposed NAATA has long time intervals between failures when

compared to the ANAT system. In our experiments, the NAATA provided a

streaming media service, without any transmission failures, for 935 seconds at a

maximum. In particular, the time intervals of less than 60 seconds were minimal.

Compare to the ANAT system, transmission failures in the NAATA are distributed

- 28 -

widely across the total play time. Given these advantages, the NAATA provides

seamless streaming media services to mobile clients for a longer time.

4.4. Overhead of NAATA and ANAT system

Available network bandwidth-based transcoding systems have overhead associated

with estimating the available network bandwidth. The ANAT system uses the IGI

algorithm to estimate available network bandwidth. As mentioned in Section 2.3,

the IGI algorithm uses a lot of packets for continuous estimation. A sender makes

the packets as small as possible. It also continuously increases the number of

packets until the number of received packets on receiver side is same as the

number of sent packets on the sender side. If a packet size is 500 bytes and at

least 60 packets are required, then more than 30 Kbytes are necessary per

estimation [15,21]. There is overhead in the ANAT method.

In order to provide seamless steaming service to clients, a short interval between

estimations is suggested. The short interval lets the target bit-rate quickly adapt to

the variable network bandwidth. However, a short interval generates more overhead.

For example, as mentioned above, if the estimation process performs per 1 second,

the traffic overhead of 30 Kbytes occurs per 1 second. If a streaming service

requires a network bandwidth between 50 Kbps and 200 Kbps, then the overhead

for 1 second is almost equal to the bandwidth of the streaming service for 1 to 4

clients. To evaluate the network state in the NAATA, a sender uses only a 24

byte payload composed of a TCP packet header and an integer variable. The

integer variable is used to store the amount of data received by the client for 1

second. Although network state checking is done every second, an overhead of

- 29 -

only 192 bps occurs and it does not impact upon the total network traffic. From

these calculations, the overhead of the ANAT is 1,250 times bigger than that of

the NAATA. As a result, the NAATA not only has little overhead but it also

provides network-adaptive streaming media service.

5. Summary

In a mobile client environment, a streaming media service has constraints such as

low computing power, unstable wireless networks, and so on. The bandwidth of

wireless network fluctuates according to mobile clients' movements and the distance

from the AP; as a result, it is hard to provide a stable QoS-guaranteed streaming

media service.

In this chapter, the NAATA was proposed to provide seamless streaming media

services for mobile clients. The proposed method detects transmission failures,

changes transcoding target bit-rates according to the network states and provides

seamless steaming media services for mobile clients. In our experiments, the

NAATA reduced transmission failures of 80% and 40% when compared with the

legacy transcoding system and the ANAT system, respectively. We also established

that the NAATA has less overhead and long time intervals between transmission

failures. Based on these advantages, we confirmed that the NAATA provides a

more seamless streaming media service for mobile clients, without jittering or

ceasing phenomena.

- 30 -

Chapter III

Load Distribution Algorithm Based on Transcoding Time

Estimation for Distributed Transcoding Servers

1. Motivation

Based on the recent significant growth of telecommunication, computer, and

image compression technologies, the streaming media service has been spotlighted

in many multimedia applications. In particular, the advances in wireless network

technologies have enabled streaming media service on mobile devices such as

PDAs and cellular phones. Streaming media need larger and more complex data

than the traditional text and image data; thus, a large network traffic bandwidth

and high-performance computing ability are required to support the quality of

service (QoS) streams [1-3,9,10].

Wireless networks have lower bandwidth channels than wired networks, and

mobile devices have limited hardware specifications. In this mobile environment, it

is hard to provide real-time processing of a high-quality streaming media service.

To solve this problem, transcoding technologies that change media data quality into

mobile client capability have been studied [9,11,12]. Transcoding technology is an

adaptation of the original encoded media to the given mobile devices. The range of

adaptations includes changing the frame rates, bit-rates, video sizes, and re-encoding

MPEG I and II media into MPEG IV [6,9,11,12,26,27].

- 31 -

The transcoding system is usually composed of multimedia servers and

transcoding servers. The multimedia server retrieves multimedia data to the selected

transcoding server, whereas the transcoding server performs transcoding jobs and

sustains the streaming service to the corresponding mobile clients. Because much

CPU usage is necessary for the transcoding process, a transcoding server is able to

treat only a few limited requests. When many requests arrive at a transcoding

server in short period, it is difficult to finish transcoding jobs within the deadline

for QoS metric. For large-scale streaming services in a mobile environment, many

transcoding servers are required. Arrival transcoding jobs should be distributed

among transcoding servers [9-12,26,27].

In large-scale distributed transcoding systems, fair distribution of the transcoding

load among transcoding servers is a critical issue to prevent disproportionate and

concentrated load of a transcoding server. All media data have different transcoding

process times because of size, bit-rate, frame rate, and transcoding methods. To

achieve fair load distribution between distributed transcoding servers, transcoding

time estimation is needed according to CPU performance of the transcoding server,

transcoding requirements and media data.

In this chapter, a new load distribution method is proposed for fair transcoding

load distribution in the distributed transcoding servers. The proposed method

controls and distributes transcoding requests based on transcoding time estimation

for distributed transcoding environments. In our experiments, the proposed method

shows better scalable performance than other load distribution methods, because the

characteristics of transcoding servers, transcoding requirements and streaming media

data are considered.

- 32 -

2. Related Work

2.1. Transcoding Systems

Figure 3-1 shows the architecture of a legacy transcoding system. The client

sends a transcoding request to a transcoding server. A transcoding server reads the

original media data from the media server, transcodes them according to user

requested resolution, bit-rate, and frame rate, and then sends the transcoded media

data. For example, a transcoding server could provide quarter common intermediate

format (QCIF) streaming media (176 × 144 resolution, 15 frames/second, 50 Kbps)

to mobile clients, which are transcoded from common intermediate format (CIF)

media (352 × 288 resolution, 25 frames/second, 100 Kbps) [9,26].

Figure 3-1. Architecture of legacy transcoding system.

There have been several approaches for transcoding systems, including

source-based static encoding systems and static transcoding server systems [6,9,15].

In the source-based static encoding system, the server stores the media data

encoded for all client grades. Due to the absence of on-line overhead for

transcoding, this approach has an advantage on the streaming service side.

However, it is difficult to prepare encoded videos that are adapted for all kinds of

- 33 -

mobile clients. This method has the disadvantage of storing all grade-encoded

media to the same media title.

In the static transcoding server system, the closest transcoding server from the

wireless base of the mobile client is selected to provide streaming media service to

a given mobile client. In this approach, specific servers could be saturated by

concentrated transcoding jobs. To address this problem, the transcoding load

distribution method has been studied to avoid load imbalance in a static transcoding

server system. In the load distribution transcoding system, a load distribution server

selects transcoding server based on load distribution policy and transcoding servers’

information [9,11,12].

2.2. Load Distribution Methods

Much research was undertaken on the load distribution strategies in a

cluster-based server. In particular, the cluster-based server architecture has been

utilized in Web server, game server, and file server areas. As representative

methods in these areas, there are the round robin (RR), the least connection (LC),

the weighted round robin (WRR), the dynamic weighted round robin (DWRR), the

resource weighted load distribution (RWLD), among others [9,11,12,26,27].

The RR method allocates servers according to the sequence of job arrival.

Because the RR does not consider the state of servers and the intrinsic features of

jobs, it is difficult to attain the effective load balancing among transcoding servers.

The LC method uses the count of clients connected to each server. This method

chooses the server with the least count value. However, in the case where the

clients keeping a long connection are mixed with others with a short connection,

- 34 -

the LC method a load imbalance between transcoding servers.

The WRR method designates a different weight to each server based on the

capability of transcoding servers. For example, if the basic weight is 1 and servers

A, B, and C have 4, 3, and 2 weights respectively, the order of scheduling is

ABCABCABA. This approach cannot reflect the state of transcoding servers that

are dynamically changed. To address this problem, the DWRR method is suggested.

For distributing jobs to servers, the DWRR method considers the current state of

backend servers. There are two ways to monitor the state of backend server. The

first is for all backend servers to send their state to the load distribution server

periodically. This method has communication overheads between the load

distribution server and the backend servers. The second is for a load distribution

server to require the information from all backend servers whenever a client request

has arrived. In this method, when some of the backend servers fail in the process

of streaming service, the load distribution server is not aware of the failed servers

immediately. In addition, if the number of clients increases abruptly, the heavy

communication traffic appears between a load distribution server and the backend

servers.

The RWLD method distributes transcoding jobs requests based on resource weight

consumption rates pre-measured on three client grades. However the RWLD method

is not able to support various kinds of clients, because it supports only these three

grades of media data. Furthermore, this method has communication overheads to

get information from transcoding servers' CPU usage.

- 35 -

3. Transcoding Time Estimation Based Load Distribution Method

For fair load balance between distributed transcoding servers, transcoding time

estimation for user requests is necessary. In this chapter, we estimate transcoding

times from target transcoding bit-rate and information of source media data, such as

running time, bit-rate, and frame rate. In addition, intrinsic CPU information of the

transcoding server is also used for transcoding time estimation. This approach could

be used for heterogeneous distributed transcoding servers, because both the

transcoding server and media are considered for transcoding time estimation. Based

on transcoding time estimation, a new load distribution method among distributed

heterogeneous transcoding servers is proposed.

3.1. Transcoding Time Analysis

A transcoding job consists of decoding source media data and encoding. The

transcoding time is the sum of decoding time and encoding time. Decoding and

encoding have various steps such as discrete cosine transform (DCT), inverse DCT

(iDCT), quantization (Q), inverse Q (iQ), motion estimation/motion compensation

(ME/MC), variable length coding (VLC), variable length decoding (VLD). A

transcoding time is the summation of all steps' time in decoding and encoding

(Equation 3-1). Table 3-1 shows symbols for equations.

In this chapter, we only consider transcoding time to change bit-rate. In a

transcoding job to change bit-rate, the ME/MC and sampling items in Equation 3-1

take 0 seconds because changing the frame rate and resolution is not needed. The

DCT and Q take the same time because the operations are always done. As a

result, the transcoding time to change bit-rate results, as shown like Equation 3-2.

- 36 -

Symbols Means Units
TrT Transcoding job time sec
TrR Relative transcoding time by target bit-rate sec
SB Source bit-rate of media data bps
TB Target bit-rate for transcoding bps

VLC, VLD Time for variable length coding and decoding, respectively sec
Q, iQ Time for quantization and inverse quantization, respectively sec

DCT, iDCT Time for DCT and iDCT, respectively sec
ME/MC Time for motion estimation/motion compensation sec

Sampling Time for sampling sec
WriteTime Time for writing 1 byte to memory sec

Clock CPU clock of transcoding server Hz
playtime Running time of media data sec

inst The number of instructions in putAC function ea
UnitOfWrite Unit of data writing in putAC function bit

STT Source bit-rate transcoding time sec
Resolution Width × height pixel
FrameRate Frame rate of source media Frame/sec

Table 3-1. Symbols for equations

Equation 3-1

∴

 Equation 3-2

Table 3-2 shows a pseudo-code of VLC in MPEG-2 [28]. A macro block has a

DC coefficient and 63 AC coefficients because a macro block is an 8 × 8 block.

In a macro block, 63 AC coefficient values are coded by run-length coding. As the

target bit-rate gets higher, the putAC() function is called on more frequently.

Therefore, the transcoding request with higher target bit-rate causes a longer

transcoding time.

- 37 -

Algorithm VLC {
/* DC coefficient */
putDClum(dc_value);
/* AC coefficient */
run = 0;
for(i=1; i<64; i++) {

if(ac_value != 0) {
putAC(run, dc_value)
run = 0;

}
else run++;

}
}

Table 3-2. VLC pseudo-code in MPEG-2

Equation 3-3 shows VLC process time. WriteTime means the time to write 1

byte to file in the putAC() function. The n can be relatively calculated with the

target transcoding bit-rate. To estimate WriteTime, we analyzed the assembly code

of the putAC() function. In this chapter, IA-32 instruction set architecture such as

Intel-like and AMD-like is considered, because the number of assembly instructions

depends on the instruction set architecture. When there is no error in putAC()

function, we confirmed that 55 assembly instructions are executed. The WriteTime

can be calculated as in Equation 3-4. From Equation 3-3 and 3-4, Equation 3-5

and 3-6 indicate the relative transcoding time. In Equation 3-6, relative transcoding

time, TrR, is proportioned to the different value the between source bit-rate and the

target bit-rate (SB - TB). In addition, it depends on the CPU clock rate, Clock.

 ×

 ∈ Equation 3-3

- 38 -

 Equation 3-4

×
×

 Equation 3-5

 ×
× × Equation 3-6

From Equation 3-6, the relative transcoding time can be estimated, however, the

relative transcoding time is not useful for load balancing in real distributed

transcoding service environments. Therefore, the absolute transcoding time estimation

should be derived from the relative transcoding time.

 × Equation 3-7

 Equation 3-8

 ×

 Equation 3-9

 ×
× ××

Equation 3-10

Equation 3-7, 3-8, and 3-9 show that the transcoding job time estimation, TrT, is

driven from the relative transcoding time, TrR. In Equation 3-7, the absolute

transcoding time, TrT, is calculated by subtracting the relative transcoding time TrR

from the source bit-rate transcoding time STT. In Equation 3-8, Resolution indicates

- 39 -

the amount of non-encoded source media data in a picture, and the

Sourcebitrate/FrameRate means the amount of source media data in a picture. Thus,

Equation 3-8 shows how many times bigger non-encoded source media data are

than encoded source media data. From Equation 3-7, 3-8, and 3-9, the absolute

transcoding time estimation, TrT, is achieved in Equation 3-10. From this equation,

we find that the difference between SB and TB and the CPU clock rate (Clock)

have a great impact upon TrT. They are written as bold type.

3.2. Load Distribution and Admission Control

To provide streaming media service for satisfying user requested QoS, media data

should be transcoded in servers and retrieved at clients within the designated

deadline time. When transcoding requests enter, the transcoding job distribution

among transcoding servers is needed to achieve effective load balance and to

provide maximum QoS streams. In this chapter, the Transcoding time

Estimation-based Load Distribution (TELD) method is proposed. Based on the

transcoding job time estimation mentioned in Equation 3-10, the TELD method

distributes transcoding jobs among distributed transcoding servers and performs

admission controls to new clients.

When new transcoding request arrives, TELD estimates the transcoding times of

a new request in all transcoding servers. After that, it calculates total transcoding

job times in each transcoding server. A total transcoding job time means the

completed time of all transcoding jobs loaded in a corresponding transcoding server.

TELD assigns a new transcoding job to a selected transcoding server that has a

minimal total transcoding job time among transcoding servers. In addition, based on

- 40 -

the total transcoding times and the running-time of new requested media, TELD

performs an admission control for a new transcoding request.

Figure 3-2 shows an example of the transcoding job scheduling among N

transcoding servers when a new transcoding request arrives. The horizontal striped

bar indicates the transcoding estimation time currently in each transcoding servers.

The vertical striped bar indicates the estimated transcoding time issues by a new

transcoding job. As shown in this figure, the vertical striped bar in each

transcoding server is calculated. These newly estimated transcoding times

represented as vertical striped bars are based on Equation 3-10. As shown in

Equation 3-10, the estimated transcoding time values are inversely depended on the

CPU clock rates of corresponding transcoding servers. For a new transcoding

request, the estimated transcoding time in Server 3 with a 1.8-GHz clock shows

the longest value, but Server 1 with 3.0-GHz clock has the shortest transcoding

estimation time.

Figure 3-2. Concept of the TELD method.

- 41 -

For load distribution, TELD calculates total transcoding times, including the

estimated transcoding time by a new request. To support QoS, the transcoding

process should be finished before the runtime of requested media. Thus, the

running time of new requested media is used as a deadline for completing all

transcoding jobs in the transcoding server. If the total transcoding time of a

transcoding server exceeds the dead line, this transcoding server is not able to

provide transcoding service within the limited time for QoS. Therefore, this server

cannot be selected as a transcoding server for a new transcoding job. In Figure

3-2, Server 1 and Server 4 are the transcoding servers that do not satisfy the

deadline. Among the transcoding servers satisfying the deadline, the TELD method

selects a transcoding server with minimal transcoding time. In our example, Server

2 is selected for a new transcoding job, because the total transcoding time of

Server 2 is the shortest among transcoding servers.

3.3. Algorithm

Table 3 shows a pseudo-code of the TELD algorithm. TELD estimates transcoding

times of transcoding jobs to change bit-rate, and selects an optimal transcoding

server among distributed transcoding servers. The Time_Estimation()function in part

C returns the estimated transcoding time value with the target transcoding bit-rate

and transcoding server information. Returned time values are stored in the

new_load[] and the total transcoding time values of each transcoding server are

stored in the AccLoad[]. The select_mts() function in part D calculates estimated

total transcoding time values of each transcoding server with the sum of AccLoad[]

for accumulated transcoding estimation time and new_load[] for new user requests.

- 42 -

struct mts_info mts[node_no]; // Struct variable for transcoding server information
double AccLoad[node_no]; // Accumulated job time of current transcoding servers
double new_load[node_no]; // Estimated time for new request
double tmp[node_no]; // temporal variable for estimation

int TELD(struct new_job)
{
 for(i=0; i<node_no; i++) // Estimate transcoding time for each transcoding server
 load[i] = Time_Estimation(new_job, mts[i].cpu_hz);
 return select_mts(load, new_job.playtime);
}

double Time_Estimation(struct newjob, double cpu)
{
 tr_r = ((INST * newjob.p_time) / (8 * cpu * 1024)) * (newjob.SB - newjob.TB) * 1024;
 // Calculate relative transcoding time
 tr_t = newjob.STT- (tr_r * 8 * newjob_resol / newjob.SB / newjob.Frame) ;
 // Estimate transcoding time
 return tr_t;
}

int select_mts(double load[], int playtime)
{
 time_gap = current_time - prev_time; // Calculate difference btw current time and
previous time
 for(i=0; i<node_no; i++) // Add new transcoding time to current
transcoding time
 tmp[i] = AccLoad[i] + new_load[i] - time_gap;

 for(i=0; i<node_no; i++) { // Select transcoding server
 if(tmp[i] < min) {
 min = tmp[i];
 selected = i;
 }
 }

 if (tmp[selected] <= playtime) {
 AccLoad[selected] = tmp[selected];
 return selected;
 }
 else return -1; // Service denied
}

A

B

C

D1

DD2

D3

Table 3-3. The TELD algorithm

In part D2, a transcoding server number with the minimum estimated total

transcoding time value is chosen among transcoding servers. In part D3, if the

transcoding time supported by the chosen transcoding server is bigger than the

running time of the requested media, no transcoding server can provide a QoS

stream for new request. As a result, our admission control rejects the new user

- 43 -

request as returning -1 value. In other conditions, TELD assigns new user requests

to selected transcoding server from the return value of select_mts() function.

Figure 3-3 shows the flow chart of TELD which distributes transcoding jobs and

performs admission control. When the transcoding system is started, TELD

initializes information of distributed transcoding servers and awaits user requests.

When a new request arrives, transcoding times for each transcoding server are

estimated and a server that has a minimal value is selected. After that, to execute

the admission control, the TELD checks whether the total transcoding time

supported by the selected server satisfies the running time of the requested media.

After the admission control passes, a new request is assigned to a selected server.

Figure 3-3. Flow chart of TELD.

- 44 -

4. Experimental Environment

For experiments, a distributed transcoding system is implemented that consists of

a load distribution server and nine transcoding servers. A load distribution server

accepts user transcoding requests and distributes transcoding jobs; transcoding

servers transcode requested media data. Table 3-4 shows hardware specifications of

transcoding servers: 2.2GHz and 1.8GHz AMD CPUs are used in these transcoding

servers. We use the ffmpeg (version 0.4.9) [24] implemented by open-source

project for transcoding. Table 3-5 shows media data for the experiment.

Figure 3-4 shows the architecture of the implemented experimental system.

Transcoding servers with odd numbers use the Server 2 specification in Table 3-4,

and the servers with even numbers use the server 1 specification. Nine total

transcoding servers are used in the experimental system.

 CPU Memory Amount

Transcoding server 1 AMD Athlon MP Thoroughbred 2200+ 1.80.GHz 1 GB 4

Transcoding server 2 AMD Opteron 248 2.20GHz 1 GB 5

Table 3-4. Hardware specification of transcoding server

 Bit-rate Running time Frame rate Resolution

The Lord of the Rings
– The Two Towers

CIF-like 1362Kbps

1448 sec 24 fps

656 × 320

QCIF-like 769 Kbps 328 × 160

SQCIF-like 468 Kbps 164 × 80

Table 3-5. Media data for experiment

- 45 -

Figure 3-4. Implemented experimental system architecture.

A load generation program is implemented for the TELD experiment. This

program generates user requests from a Poisson distribution with lambda 0.25 [1].

The requested target transcoding bit-rates are chosen on the present condition of

wireless network bandwidth usages and mobile clients from the 2008 Survey on the

Wireless Internet Use [29]. Eighty percent of user requests are 56Kbps target

bit-rate; the others are randomly decided between 100Kbps and 1000Kbps.

We implemented a yardstick program [30] that consists of a virtual server and

virtual clients for experiencing similar real environments. The virtual server in a

load distribution server generates user requests by using a load generation program.

The generated requests are sent to virtual clients, which requests streaming media

service from the load distribution server. When the load distribution server receives

user requests from virtual clients, TELD selects a transcoding server among

distributed servers and forwards it to the selected server. The selected transcoding

server performs the requested transcoding job and provides streaming media service

to the virtual client.

- 46 -

The virtual client receives streaming media from the selected transcoding server

at the requested bit-rate. Furthermore, the virtual client checks whether the amount

of received data is lower than requested bit-rate; if it is, the virtual client sends an

error message to the virtual server. This error message means that the serviced

stream does not satisfy the QoS metric. The streams with errors are excluded in

the total number of QoS streams.

5. Performance Evaluation

5.1. Transcoding Time Estimation and Measurement

CIF-like media data cannot be transcoded to 500Kbps or less, because each

resolution of media data has a minimum bit-rate. Thus, we use three kinds of

media data type, as shown as Table 3-5. Transcoding time values for each

transcoding server can be estimated with relative transcoding time values by using

Equation 3-10. Figure 3-5, 3-6, and 3-7 show the estimated transcoding time values

on each transcoding server and the measured transcoding time values. As shown in

these figures, the estimated transcoding time values are similar to real transcoding

times on transcoding servers. Figure 3-8 shows differential rates between estimated

transcoding time values and measured transcoding time values. The worst case is

2.94% in Server 1, which performed the transcoding job from SQCIF media to

300Kbps bit-rate. The average differential rate is 1.01% for all servers and all

media. Based on the minimal differential rates between estimated transcoding times

and measured transcoding times, we can use the estimated transcoding times

derived from Equation 3-10 for the load distribution among distributed transcoding

servers for arrival transcoding requests.

- 47 -

Figure 3-5. Transcoding time using CIF-like media.

Figure 3-6. Transcoding time using SCIF-like media.

Figure 3-7. Transcoding time using SQCIF-like media.

Figure 3-8. Differential rates between estimated times and measured times.

- 48 -

5.2. Number of QoS Stream

For performance evaluation, we measured the maximum numbers of QoS streams.

We implemented the RR, WRR, RWLD, and TELD in the same working

environment. Figure 3-9 shows the number of QoS streams according to the

number of transcoding servers. The QoS means that clients received streaming

service within the designated bit-rate. It is the most important mandatory

requirement in the streaming media service. If the QoS requirement does not

guarantee in the serviced streams, those streams cannot be involved in the total

number of QoS streams.

As illustrated in Figure 3-9, the maximum numbers of QoS streams increases

proportional to the number of transcoding servers in all methods. In this figure, the

TELD method shows the best performance scalability compared to the RR, WRR,

and RWLD methods.

When the RR method is used, some transcoding servers suffer from overloaded

transcoding jobs, because the method does not consider media transcoding. As a

result, these servers cannot satisfy the QoS requirement. In particular, new

transcoding jobs allocated to these overloaded transcoding servers have negative

impact on other QoS streams in progress.

For load distribution, the WRR method uses CPU performance information of

transcoding servers. This method does not consider the characteristic of transcoding

jobs as does the RR method. Therefore, because some specific servers suffer from

a heavily transcoding load, the WRR method did not show good performance

scalability.

- 49 -

Figure 3-9. The number of QoS clients according to the number of transcoding servers.

The RWLD method uses both the resource consumption weights by three

transcoding grades and the maximum number of streams in transcoding servers.

However, this method considers only three kinds of transcoding media grades,

which are not enough to estimate the transcoding times for various mobile devices.

In addition, because the transcoding estimation times included the time for the

streaming process, accurate transcoding times could not be applied in load

distribution. As a result, even if the number of transcoding servers is increased, the

RWLD should be able to limit the performance scalability as shown in the Figure

3-9.

On the other hand, the TELD method is based on the estimated transcoding time

for various transcoding bit-rates in transcoding servers. In particular, the TELD

- 50 -

method considers CPU clocks of transcoding servers and any kinds of bit-rate

transcoding job. In the Figure 3-9, according to the number of transcoding servers,

the QoS streams supported by the TELD method increases rapidly because the

TELD method distributes transcoding jobs based on the estimated transcoding time

according to the characteristic of target media and transcoding servers. As the

number of transcoding server increases, the available time for transcoding in servers

also increases. As a result, the total transcoding job times in transcoding servers

decrease and so more transcoding requests could be accepted in the TELD method.

6. Summary

In this chapter, load distribution methods were studied in distributed transcoding

servers. Based on analysis of the transcoding process of MPEG-2 media, we found

out that VLC is the most significant part for transcoding time estimation. We

proposed the transcoding time Estimation method based on characteristics of

MPEG-2 media and transcoding server. Using the estimated transcoding time, the

TELD method was proposed for fair load distribution and admission control of

distributed transcoding servers.

In our experimental distributed transcoding servers, we evaluated the scalable

performance of the RR, WRR, RWLD and TELD methods. Because the RR and

WRR method did not consider the characteristic of transcoding jobs, it cannot

satisfy the QoS requirement. Therefore, because some specific servers suffer from

heavy transcoding load, it did not show good performance scalability. The RWLD

method considers only three kinds of transcoding media grades, which are not

enough to estimate the transcoding times for various mobile devices. As a result,

- 51 -

even if the number of transcoding servers is increased, the RWLD should be able

to limit the performance scalability.

The TELD method distributes transcoding jobs based on the estimated transcoding

time according to the characteristic of target media and transcoding servers. As a

result, we confirmed that the proposed TELD method provided more linear

performance scalability than other load distribution in Section 5.

- 52 -

Chapter IV

Stream Prefetching Method on Streaming Media Service

for High Speed Mobile Users

1. Motivation

As a result of improvements in mobile wireless internet technologies such as

IEEE 802.16e Mobile WiMAX, high speed moving users are able to access internet

service, and a streaming media service using PDAs, laptops, mobile phones and so

on. However, mobile wireless networks have variable bandwidths depending on the

speed and location of clients. These characteristics make it hard to support stable

Quality of Service (QoS) streams for high speed mobile clients. In a streaming

media service, wide and stable network bandwidths are necessary in order to

retrieve large amount of media data on real-time [1,9,10].

On high speed mobile internet environments such as Mobile WiMAX, a mobile

client moving under 60Km/h can be provided 3Mbps in general condition [31-33].

However, mobile clients moving 60Km/h or faster are not able to be provided

3Mbps and stable connectivity because of frequent handover [34]. To provide stable

QoS guaranteed streaming media service over high speed mobile internet

environments, bandwidth allocation methods [33,35-37], handover methods [37-41],

mobile IP(MIP) providing mobility [42-56], client direction detecting methods

[57-66], and media streaming methods [67-77] have been studied.

- 53 -

The Mobile WiMAX has an additional service class for real-time service such as

streaming media service, VoIP and so on [33,35-37]. The service class provides a

fixed bandwidth for real-time data, but no specific method is provided for

streaming media service. Based on MIP-related research [42-56], a seamless

connectivity is able to be provided with minimized latency caused by handover.

These can be used for streaming media service on Mobile WiMAX.

Detection methods of mobile client direction have been researched to reduce

latency and disconnect caused by handover [57-66]. Since not only streaming media

service but also any kind of network application need seamless connectivity, these

methods are used various applications. However, these methods are not reflect high

speed moving clients being provided streaming media service. In addition,

Streaming media service methods for mobile internet environments have been

studied [67-77] such as user grouping methods for streaming media service, buffer

management methods with prefetching, and data reducing methods for transmitting.

However these researches consider only specific environment or do not consider

dynamic clients environment and high speed client mobility. Therefore, these

methods are able to provide a few specific applications.

In this chapter, a client mobility-based media stream prefetching method to

guarantee stable QoS in high speed internet environment like a Mobile WiMAX, is

proposed. In proposed method, high speed moving clients is joint a group

depending on their characteristics and provided streaming media service according

to a joint group. Mobile clients can change their group depending on their

situation. In each group, clients' direction is predicted, and media streams are

prefetched against disconnect and latency caused by handover. The proposed

method is experimented and evaluated that buffer state is stable with handover for

- 54 -

streaming media service.

2. Related Work

2.1. Mobile WiMAX

The Mobile WiMAX based on IEEE 802.16e standard is wireless wide-band

network to provide high mobility and high speed bandwidth with low cost [32,33].

At least 512Kbps in downstream and 128Kbps in upstream are guaranteed to a

client with 60Km/h movement in cell boundary, and channel bandwidth is over

9MHz. In general condition, 3Mbps bandwidth is provided [31,33]. To guarantee

QoS for various network traffics in the Mobile WiMAX, IEEE 802.16e MAX

protocol provides various bandwidth request-allocate methods are defined. The

Mobile WiMAX provides different services depending on three kinds class;

Real-time Polling Service(RtPS), Non-real Time Polling Service(NrtPS), and Best

Effort service(BE) [33,35-37]. Therefore, mobile client serviced by Mobile WiMAX

should be guaranteed QoS level of own service class.

2.2. Handover in Mobile WiMAX

In the Mobile WiMAX network, a handover consists of three steps; neighbor

network search step, handover preparation step, and handover execution step. A

mobile station(MS) initiate handover and a network initiate handover are provided

in the Mobile WiMAX [37-41].

- 55 -

2.2.1. Neighbor Network Searching and Information Collect

When a MS is in network, a MS receives periodic MOB_NBR_ADV (Neighbor

Advertisement) messages from base station(BS) providing wireless connectivity. This

messages include information and network attributes of every neighbor BS. When a

MS receives MOB_NBR_ADV message, a MS collects ID, QoS parameter, channel

information of neighbor BS, and prepares fast handover [37-41].

Another way to get network information is MS's scanning procedure to measure

downlink signal strength from neighbor BSs. Since a MS collects IDs of neighbor

BSs using MOB_NBR_ADV message and real-time link information using scanning,

a MS chooses suitable BSs and manages handover candidate BS list.

To reduce handover latency time, an association procedure with neighbor BS can

be performed in scanning procedure. In association procedure, a MS can do initial

ranging procedure with specific BS. Ranging is a first step when new MS enters

network. Using these procedures, handover processes are optimized by a MS

re-using basic information related channel attributes include frequency and power

control of new BS(NBS).

2.2.2. Handover Preparation

In handover preparation, a MS selects a target BS that is optimal to handover,

based on collected information such as signal strength and QoS parameter, in

previous step. And then, a handover is decided depending on a MS initiated

handover or network initiated handover [37-41].

- 56 -

2.2.2.1. MS Initiated Handover Preparation

Figure 4-1. Successful MS Initiated HO Preparation[38].

STEP 1

The MS initiates a handover by sending a MOB_MSHO-REQ message to the

Serving BS, which includes one or more potential target BS's.

STEP 2

The Serving BS sends an R8 HO_Req message destined to each potential

Target BS’'s selected for the handover and starts timer TR8-HO Req for each

message. The message includes an Authenticator GW(Gateway) ID

TLV(Threshold Limit Value) that points to the Authenticator/Key Distributor

function at the Authenticator ASN(Access System Network) and the Anchor

ASN GW ID of the Anchor Data Path function at the Anchor ASN.

STEP 3

The Target BS(s) MAY request AK(Authentication Key) context and service

- 57 -

authorization information for the MS by initiating a Context Retrieval procedure

with the Authenticator ASN GW. Note: The Target BS(s) may optionally

choose to defer this procedure to the Handover Action phase.

STEP 4

The Target BS(s) MAY initiate pre-establishment of a data path for the MS

with the Anchor ASN GW. If the Anchor ASN GW does not support the Data

Path Pre-Registration, the R6 Path_Prereg_Req message from the Target BS

will be responded by the R6 Path_Prereg_Rsp message with an appropriate

reject cause code. Note: The Target BS(s) may optionally choose to defer this

procedure to the handover Action Phase.

STEP 5

The Target BS(s) sends an R8 HO_Rsp message to the Serving BS to

acknowledge the handover request and starts timer TR8-HO Rsp. Upon receipt

of the R8 HO_Rsp message, the Serving BS stops timer TR8-HO Req.

STEP 6

The Serving BS sends a MOB_BSHO-RSP message to the MS containing one

or more potential target BS's selected by the network for the MS to handover

to.

STEP 7

The Serving BS sends an R8 HO_Ack message to the Target BS(s) controlling

the potential target BS(s) selected for the MS. Upon receipt of the R8

HO_Ack message, the Target BS(s) stops timer TR8-HO Rsp.

- 58 -

2.2.2.2. Network Initiated Handover Preparation

Figure 4-2. Successful Network Initiated HO Preparation Phase[38].

STEP 1

The Serving BS initiates a handover by sending an R8 HO_Req message

destined to each Target BS's selected for the handover and starts timer

TR8-HO Request for each message. The message includes an Authenticator

GW ID TLV that points to the Authenticator/Key Distributor function at the

Authenticator ASN and the Anchor ASN GW ID of the Anchor Data Path

function at the Anchor ASN.

STEP 2

The Target BS(s) requests AK context and service authorization information for

the MS by initiating a Context Retrieval procedure with the Authenticator ASN

GW. Note: The Target BS(s) may optionally choose to defer this procedure to

the Handover Action phase.

- 59 -

STEP 3

The Target BS(s) MAY initiate pre-establishment of a data path for the MS

with the Anchor ASN GW. If the Anchor ASN does not support the Data

Path Pre-Registration, the R6 Path_Prereg_Req message from the Target BS

will be responded by the R6 Path_Prereg_Rsp message with an appropriate

reject cause code. Note: The Target BS(s) may optionally choose to defer this

procedure to the handover action phase.

STEP 4

The Target BS(s) sends an R8 HO_Rsp message to the Serving BS to

acknowledge the handover request and starts timer TR8-HO Rsp. Upon receipt

of the R8 HO_Rsp message, the Serving BS stops timer TR8-HO Req.

STEP 5

The Serving BS sends a MOB_BSHO-REQ message to the MS containing one

or more potential target BS's selected by the network for the MS to handover

to.

STEP 6

The Serving BS sends an R8 HO_Ack message to the Target BS(s) controlling

the potential target BS(s) selected for the MS. Upon receipt of the R8

HO_Ack message, the Target BS(s) stops timer TR8-HO Rsp.

2.2.3. Handover Execution

When a MS select a target BS, and is ready for handover, the MS sends

MOB_HO-IND message to previous BS (PBS) in order to notify, performs

- 60 -

handover. After sending MOB_HO-IND message, the MS can not receive a packet

from PBS. After that, the MS performs a network entry procedure. At first, the

MS performs ranging to synchronize link with a NBS, and negotiates capability

with the NBS. After that, the MS registers into the NBS via authentication

procedure. If the NBS receives the MSs' information about capability and

authentication using backbone network already, the MS can reduce handover

processes with skipping information sending. After the network entry procedure is

done, the NBS can provide service to the MS [37,39-41].

If a MS moves to different network subnet, the MS should get a valid new

care-of address (NCoA) again and perform additional IP connection re-confirmation

procedure. Furthermore, the MS should perform a IP handover procedure like

MIPv6 with NCoA in order to resume the session using in previous network.

2.3. Mobile IPv6 and Handover

2.3.1. Mobile IP

The Mobile IPv4 (MIPv4)[39,42] and the Mobile IPv6 (MIPv6)[39,43] established

in MIP4 and MIP6 working group of Internet Engineering Task Force(IETF) is an

international standard protocol to provide mobility.

MIPv6 provides clients' mobility based on binding between a home address(HoA)

of client and newly created care-of address (CoA) in NBS. When a correspondent

node (CN) can handle MIPv6, a binding is sent to the CN and optimal routing

path are provided for data packets. However, because MIPv6 is a protocol about

MS's location registration, data packet path re-routing, mobility for real-time

application such as streaming media service and VoIP, is hard to guarantee in

- 61 -

MIPv6 [39,44-46].

MIPv6 Signaling and Handoff Optimization (MIPSHOP) working group in IETF

established a fast mobile IPv6 (FMIPv6) protocol for fast IPv6 handover [39,47].

FMIPv6 provides fast service resuming based on estimating new location of a

client supported by link layer and exchanging information for IPv6 handover and

resuming service. Therefore FMIPv6 needs a correct mechanism for and event

support method and an event exchange method from link layer. Recently, IEEE

802.21 working group [39,48-50] establishes a standard about interaction mechanism

between link layer and upper layer, and an interaction method between FMIPv6

and WLAN specialized for IEEE 802.11 WLAN is proposed [39,46-52].

2.3.2. Fast Mobile IPv6

FMIPv6 is a mobility estimation based protocol. If a mobility estimation and

handover preparation is done, FMIPv6 performs as a predictive mode. If not,

FMIPv6 performs as a reactive mode [39,47].

2.3.2.1. Handover Process of Predictive Mode

When a MS detects a NBS, a MS sends a Router Solicitation for Proxy

(RtSolPr) message to a previous access control router (PACR) in order to collect

information of a new ACR (NACR). The PACR responses with a Proxy Router

Advertisement (PrRtAdv) that contains IP address, MAC address and subnet prefix

information of NACR based on RtSolPr. After that, the MS moves to the NACR

using prefix information in a received PrRtAdv message, creates new IP address

(NCoA), and then sends a fast binding update (FBU) message to the PACR for

- 62 -

binding between PCoA and NCoA. If the MS receives a fast binding

acknowledgement (FBAck) message about the FBU message before handover, the

MS performs predictive mode. If a FBU message is not sent or a FBAck is not

received before handover, the MS performs reactive mode [39,47].

When the PACR receives a FBU message from a MS, the PACR exchanges a

handover initiation (HI) message and a handover acknowledge (Hack) message with

NACR. The PACR checks uniqueness of NCoA in NACR via Hack message, and

then creates a tunnel between PCoA and NCoA. This uniqueness check result is

sent to the MS via FBAck.

After the tunnel is created, all packets toward the PCoA are forwarded to the

NCoA and the NACR saves forwarded packets into buffer. When a fast neighbor

advertisement (FNA) message is received from the MS completed handover, the

NACR sends all buffering packets.

2.3.2.2. Handover Process of Reactive Mode

If a FBU message is not sent or a FBAck is not received before handover, the

MS performs reactive mode. The MS sends a FNA message including encapsulated

the FBU to NACR. After the NACR receives FBU, the NACR checks uniqueness

of NCoA inside FBU in the network. After that, the NACR sends FNA message

include FBU to PACR. When the FBAck is arrived from PACR, the NACR

creates a tunnel between PCoA and NCoA, and sends packets to the MS. IF the

NCoA is already occupied, the NACR sends a router advertisement message with

Neighbor Advertisement Acknowledgement (NAACK) option, and abandons FBU

message [39,47].

- 63 -

2.3.3. HMIPv6

IETF establishes Fast Handovers for Mobile IPv6(FMIPv6), Hierarchical Mobile

IPv6 Mobility Management (HMIPv6), and Fast Mobile IPv6 Handover Protocol

using HMIPv6 (FHMIPv6) in order to reduce handover latency [47,53,54].

HMIPv6 guarantees small handover latency, because a registration process of MS

is done only once in same MAP. However, HMIPv6 is not enough to support

real-time application service. FHMIPv6 is a protocol to provide seamless service

when micro mobility handover in same MAP occurs. However FHMIPv6 does not

support macro mobility handover that is a handover between different MAPs. For

macro mobility handover of fast moving MS, a fast handover supporting macro

mobility handover in HMIPv6 (MMHHMIPv6) and various handover methods base

on HMIPv6 are proposed [53,55,56].

2.4. Direction Prediction for Handover

Network layer mobility prediction schemes that are designed to facilitate

pro-activity in the handover process also aid in resource allocation, flow control,

call admission control, congestion control and QoS provisioning. Mobile Motion

Prediction (MMP) algorithms used to predict future locations of a mobile user

according to the user's movement history patterns was proposed [57,58]. This was

one of the first of many techniques in the literature used to pro-actively connect

services at the new location before the user's arrival. The MMP algorithms are

based on the fact that human movement generally consists of regular and random

movement. These algorithms use correlation analysis to match movement sequences

- 64 -

in a movement database. Results show that the MMP algorithm is highly accurate

for regular movements but decreases linearly with increasing random movement.

A novel data mining approach for the prediction of user movements in mobile

environments[57,59] is proposed based on the Apriori algorithm [60,61] and

prediction algorithms[62,63]. This three stage prediction algorithm is to predict the

mobility of a user travelling between the cells of a PCS (Personal Communication

System) network. Simulation results reveal optimal prediction parameters for the

PCS topology. Moderate prediction accuracy was achieved, decreasing only

minimally with an increase in random movement. The authors focus primarily on

prediction recall and precision results, and make no practical use of the movement

predictions.

A prediction scheme based on the MMP algorithms[58] that uses actual

movement traces taken from the campus-wide 802.11b wireless network, is

proposed [57,64]. Data streams are duplicated and forwarded to predicted subnets

resulting in a network layer handover latency that is close to a link-layer handover.

Results show a reduced handover latency and packet loss rate compared to

NeighborCasting.

A prediction mechanism that learns the mobility patterns of a mobile node

according to an urban mobility model, is proposed[57,65]. The model attempts to

capture realistic node movement in an urban environment, characterized by the

MN's speed, direction, pause time and street coordinates. A weighted road selection

process uses these parameters to predict the node's next hop, pre-emptively setting

up tunnels and estimating tunnel activation times, consequently eliminating the need

for a pre-trigger. This approach achieves 100% prediction accuracy only after 3000

seconds of movement over a small Manhattan-style street topology.

- 65 -

A prediction assisted fast handover protocol (PA-FMIP) based on reactive

FMIPv6 and using data mining and the Apriori algorithm[66] is proposed[57].

PA-FMIP uses the predictions from the prediction algorithm to essentially replace

the need for a pre-trigger. The prediction algorithm is run as an application at

some time between handovers.

2.5. Media Streaming in Mobile Environments

Media streaming in mobile environments has been attracting much attention lately

[67,68]. A real-time continuous media streaming protocol with special emphasis on

dynamic transmission capacity allocation and prefetching is proposed [67,69].

NonStop middleware with partition prediction and service replication for continuous

media streaming in mobile and ad hoc networks is developed [67,70]. Video

streaming techniques in 3G mobile networks on top of a three-tier architecture is

implemented [67,71]. These are only focused on the coordination of media servers

for smooth handover and the rate adaptation technique when a base station

becomes overloaded. There is no coordination at the base station level or the user

level. Data management issues, prefetching in particular, are largely ignored.

Group mobility to predict the future availability of wireless links for increasing

total streaming capacity is proposed [67,72]. An iterative algorithm to predict

continuous link availability between mobile users is proposed [67,73]. The V3

architecture proposed for live video streaming is essentially a cooperative streaming

architecture for moving vehicles [67,74]. The AO2P algorithm proposed for privacy

routing uses a mechanism such that a receiver geographically closer to the

destination is assigned to a class with a higher priority for contending the channel

- 66 -

to be the next hop [67,75]. The routing request in AO2P is sent to all neighboring

nodes.

The work on moving objects databases is needed to maintain dynamic data items

[67,76,77]. For representing and processing dynamic attributes such as locations and

trajectories, spatial and temporal indexing methods are devised.

The headlight prefetching is proposed for media streaming in mobile

environments [67]. It has headlight prefetching zone that is a virtual fan-shaped

area along the direction of user movement similar to the headlight of a vehicle. All

service access pointers (SAP) of the cells that overlapped with the zone are

selected as the prefetching SAPs.

3. Prediction of Mobile Client's Movements

3.1. Grouping and Characteristics Analysis of Mobile Client's

Movements

To provide user requested QoS guaranteed streaming media service on Mobile

WiMAX, we collect and analyse characteristics of streaming media service users'

mobility. Table 4-1 shows grouping of streaming media service users depending on

mobility characteristics. Mobile clients on foot has limited mobility. Since they

move in 4 Km/h, handovers are rarely occurred and previous methods are enough

to provide stable QoS guaranteed streaming media service.

Full mobility clients are in buses, vehicles, and subway. This group can be

divided into low chance of estimate movement group, Group B, and mid chance of

estimate movement, Group C. Streaming media service users in buses or vehicles

- 67 -

in city area are in Group B. Since many intersections, junctions, and traffic signals

are operated in city area, mobile clients' speed and direction are frequently

changed. Therefore, clients in Group B need frequent handover, and direction and

speed are hard to predict. Group C includes streaming media service users in

subway or vehicles in high way. Because users in Group C move following

subway lines or high way path, speed and direction can be predicted easier than

Group B. However, getting off subway in stations or using out ramp in high way

are hard to predict. Since vehicles in high way move very fast, handover are

needed very frequently.

Mobility Group Probability of
estimation Characteristic Policy Example

Limited
Mobility A Random

Impossible to estimate
(Random)

Low possibility of
handover

Legacy policy Pedestrians

Full
Mobility

B
Low Chance of

Estimate
Movement

Possible to estimate
High possibility of

handover

Car movement
estimation based on

intersection possibility
Users in vehicle

at city area

C

1

Mid Chance of
Estimate

Movement

Semi-fixed route
High possibility of

handover

Hand-off scheduling
based on routes and
exception handling

Users in subway

2 Users in vehicle
at highway

High
Mobility D

High Chance of
Estimate

Movement

Fixed route
High possibility of

handover
Hand-off scheduling

based on routes
Users in train at

railroad

Table 4-1. Category for Mobile Clients.

- 68 -

High mobility clients, Group D, are streaming media service users in high speed

moving trains. Users in Group D move fast and following route of trains. Since

distance between stations are long, variation of speed and direction is small. In

station, clients get off train less frequent than subway. However, since users in

Group D have the fastest speed, handovers are occurred very frequently. Therefore,

it is hard to provide stable QoS streaming media service.

3.2. Prediction of Mobile Client's Direction

In previous section, groups of streaming media service users are shown. In this

section, a prediction method of clients' direction and speed is proposed.

3.2.1. Group A

The Group A is low mobility users using streaming media service. Speeds of

this group users are less than 4 Km/h, directions are randomly decided by users.

Therefore, handover probability of Group A is very low. In Mobile WiMAX,

3Mbps bandwidth is provided normally, and 2Mbps bandwidth is provided under

10Km/h movements [31,32,38]. Therefore, since Group A has enough bandwidth

and low handover probability, legacy methods such as PA-FMIP[57], in Mobile

WiMAX can provide stable QoS streaming media service.

3.2.2. Group B

Group B is full mobility users using streaming media service in buses or

vehicles in city area. According to Korea Transport Database [78], average vehicles'

- 69 -

speed in Korean cities is approximately 35 Km/h and maximum is 60Km/h. We

can get average speed and maximum speed of each intersection or junction at each

time from Korea Transport Database. Therefore, speed and direction probability of

client are predicted using Korea Transport Database.

However, these method predicts only probability of whole vehicles for directions.

It is not able to reflect each client's characteristics. Moving speed of a client is

almost same as whole vehicles flow, but moving direction is different individually.

When user A uses streaming media service in office-going hour by buses, we can

predict that movement of user A is always same. Therefore, individual client

movement history should be considered to predict client's direction.

Equation 4-1 shows how to predict direction of clients in Group B in location a

at time t.

 × ×

⋯

 ⋯

Equation 4-1

3.2.3. Group C

Group C is full mobility users using streaming media service in subway or

vehicles in high way. Users in Group C are divided into users in subway, Group

C-1, and users in vehicles in high way, Group C-2.

- 70 -

Group C-1 is user group using streaming media service in subway. Subway is

operated in subway line and operating time and stop time are always same.

According to information site of Korean Railroad Cooperation (Korail) [79], average

speed of Seoul metro subway is 50Km/h and maximum speed is up to 100Km/h.

Because distance between stations is short and subway is stopped frequently at

station. Since entry points and exit points are automated, we can collect how many

passengers enter or out in a station at specific time. Equation 4-2 shows how to

predict direction of clients in Group C-1 in station s at time t.

 × ×

 or

Equation 4-2

Group C-2 is streaming media service user group in vehicles in highway. The

speed limit of Korean highway is 100Km/h or 110Km/h. According to Korean

Highway Traffic Information site [80], usually 100Km/h is average speed in

highway. Since clients in Group C-2 move fast, a handover direction prediction is

important to provide stable QoS guaranteed streaming media service. Because traffic

information of Korean highway is provided in Korean Highway Traffic Information

- 71 -

site, we can collect client's speed in highway. Since, movements of vehicles in

highway are following highway path, we can predict client direction except out

ramps, interchange areas, and rest places. However, because speed limits in out

ramps, interchange areas, and rest places are less than 50Km/h, movements change

to out ramps, interchange areas, and rest places can be predicted from moving

speed. Furthermore, individual client's history should be considered like Group B,

and Group C-1. Equation 4-3 shows how to predict direction of clients in Group

C-2 in location l at time t.

 × ×

⋯

 ⋯

Equation 4-3

3.2.4. Group D

Group D is streaming media service user group in high speed train. According to

Korail Information Site [79], maximum speed and average speed of KTX are

300Km/h and 165Km/h individually, and maximum speed and average speed of

MuGungHwa train are 120Km/h and 8~90Km/h individually. Since users in Group

D are similar to Group C-1 but moving speed is much faster, handover probability

is higher than Group C-1. However, because distances between stations are longer

than subway, moving direction is predictable. Equation 4-4 shows how to predict

- 72 -

direction of clients in Group D in station s at time t.

 × ×

 or

Equation 4-4

3.3. Group Changing based on Mobility

In previous section, how to predict client's direction and speed of each group is

explained. Clients in each group can be predicted moving direction and speed from

equations of each group. However, clients are in only one group. For example,

streaming madia service user B in subway, Group C-1. And then user B get off

subway, Group A, and walks to bus stop. After that, user B gets on bus, Group

B. In this case, user B should be able to change group (Group C-1 -> Group A

-> Group B). In this section, a group changing method is proposed and explained.

A user in Group A can change to Group B, when the user gets on vehicles in

city area. When the user uses subway or train, the user change to Group C-2 or

Group D. A user in rest place of highway can change to C-2, when the user gets

- 73 -

on vehicle. Therefore, users in Group A can change to Group B, C-1, C-2, and D.

Users in Group B can change to Group A when users get off vehicle, and to

Group C-2 when vehicle enters highway. Users in Group C-1 can change to only

Group A, when users get off subway. Users in Group C-2 can change to Group A

when users get off vehicle, and to Group B when vehicle enter city area via out

ramp. Users in Group D can change to only Group A like Group C-1 users, when

users get off. Figure 4-3 show group changing states of mobile clients as

mentioned above.

Figure 4-3. State Diagram of Mobile Clients Group.

4. Prefetching Method for Handover

Streaming media service for fast moving clients is hard to guarantee stable QoS.

In each cell boundary, signal strength is weaker and bandwidth is lower than center

area of cell. Therefore, mobile clients in cell boundary is possible to have low

level of buffer. If handover is needed when buffer level is low, streaming media

service could be stopped and waited until than buffer level is enough to resume

- 74 -

streaming media service.

In previous section, a detection method of moving direction and speed in each

group is proposed. In this section, a prefetching method is proposed to keep stable

streaming media service buffer state based on proposed detection method.

4.1. Prefetching before Handover

Since bandwidth reduction and no transmission are occurred when a MS moves

from center area of cell to cell boundary, stream data for period until handover

finished is pre-sent to the MS to prevent low level of buffer. Using proposed

prediction method, time period from now to handover is estimated before that the

MS enters cell boundary which is bandwidth reduction area. Based on time period,

stream data amount can be calculated for prefetching. A streaming server sends

calculated prefetching stream data to the MS when network bandwidth is stable.

Equation 4-5 shows how to estimate prefetching stream data size. Distance(m) can

be calculated with current speed and location of the MS and a radius of PBS cell.

sec

×

×

Equation 4-5

4.2. Prefetching after Handover

After a handover is done, a MS is still in cell boundary of NBS. Therefore, the

MS is provided lower bandwidth than center area of cell. Since the MS requests

media stream data to server in low bandwidth area after the handover, media

- 75 -

stream data might be delayed to the MS. It causes low buffer level of the MS. To

solve this problem, media streaming server sends stream data to the NBS before

the handover to prevent low buffer lever of the MS after the handover. After the

handover, the MS can receive stream data from NBA immediately to reduce delay

of stream data retrieval. The amount of stream data can be calculated with time

period from the handover finish time to the time of enter the NBS center area as

shown as Equation 4-6. Distance(m) can be calculated with current speed and

location of the MS and a radius of NBS cell.

sec

×

×

Equation 4-6

4.3. Prediction Failure Recovery

When a MS does not perform a handover to predicted cell, prefetched stream

data is not useful anymore for the MS and the MS cannot receive prefetched stram

data, because prefetched stream data is not located in NBS for handover. It causes

low buffer level of the MS. However, the MS can be notified NBS before the

handover in network initiated handover of Mobile WiMAX. Therefore, if FMIPv6

or HMIPv6 is used for handover, the MS knows NBS. When prefetching BS is not

NBS, the PBS can send forwarding request to prefetching BS. When prefetching

BS receives forwarding request, prefetching BS sends prefetched stream data to the

NBS. Since the NBS is near prefetching BS and both are connected with back

bone network, forwarding data is done shortly. Therefore, prefetched stream data

can be forwarded before the handover is done, because the handover takes a few

time.

- 76 -

5. Experimental Results and Analysis

5.1. Experimental Environment

We simulates proposed methods for buffer state of a high speed moving MS in

streaming media service. A simulation program is developed with c language base

on linux system. We assumes that buffer size of a MS is streaming data for 10

seconds, a cell radius is 1Km, a cell boundary is started from 0.8 of cell radius, a

prefetching starting point is 0.7 of cell radius, and a handover is done at 0.9 of

cell radius.

Speed Bandwidth
High Mobility over 120Km/h under 144Kbps
Full Mobility under 120Km/h over 384Kbps

General Mobility under 60Km/h over 512Kbps
Limited Mobility under 10Km/h over 2Mbps

Table 4-2. Bandwidth variation according to client's speed.

Group Average Speed Minimum Bandwidth
KTX Group D 165Km/h 144Kbps

SaMaUl Train Group D 110Km/h 384Kbps
Vehicles in Highway Group C-1 100Km/h 384Kbps
MuGungHwa Train Group D 70Km/h 384Kbps

Vehicles in City
(Limited Speed) Group B 60Km/h 512Kbps

Subway Group C-2 50Km/h 512Kbps
Vehicles in City
(Average Speed) Group B 30Km/h 512Kbps

Pedestrian Group A 4Km/h 2048Kbps

Table 4-3. Minimum bandwidth and average speed of each transportation.

- 77 -

Media 1 2 3 4 5

bit-rate 56Kbps 200Kbps 400Kbps 800Kbps 1024Kbps

Table 4-4. Media bit-rate of experiment.

Table 4-2 shows bandwidth variation according to client's speed. Average speeds

and minimum bandwidths of experimental mobility are shown as Table 4-3.

Bit-rates of experimental media data are in Table 4-4.

5.2. Buffer State Analysis

Figure 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, and 4-10 show buffer status of a MS using

streaming media service in a KTX, a SaMaUl train, a vehicle in highway, a

MuGungHwa train, a vehicle in uncongested city area, a subway, and a vehicle in

congested city area respectively.

Figure 4-4. Buffer Status of Mobile Client in KTX.

- 78 -

Figure 4-5. Buffer Status of Mobile Client in SeMaUl
Train.

Figure 4-6. Buffer Status of Mobile Client in Vehicle on
Highway.

- 79 -

Figure 4-7. Buffer Status of Mobile Client in
MuGungHwa Train.

Figure 4-8. Buffer Status of Mobile Client in Vehicle
on City Area.

- 80 -

Figure 4-9. Buffer Status of Mobile Client in Subway.

Figure 4-10. Buffer Status of Mobile Client in Vehicle on
Congested City Area.

- 81 -

Figure 4-4 shows buffer status of a MS using 56Kbps and 200Kbps streaming

media service in a KTX. A normal streaming media service with 56Kbps is

stopped in around 450 seconds and a normal streaming media service with

200Kbps is stoped several times. However, a proposed method with 56Kbps and

200Kbps supports a seamless streaming media service without any problem and

re-buffering. Figure 4-5 show buffer status of a MS using 200Kbps and 400Kbps

streaming media service in a SeMaUl train. As same as figure 4-4, a proposed

method provides stable buffer status of the MS.

Figure 4-6, 4-7, and 4-8 show buffer statuses of a MS using 400Kbps and

800Kbps streaming media service in a vehicle in highway, a MuGungHwa train,

and a vehicle in uncongested city area, respectively. We can see that the proposed

method provides stable buffer status and seamless streaming media service. Figure

4-9 and 4-10 show buffer statuses of a MS using 800Kbps and 1.5Mbps streaming

media service in a subway and a vehicle in congested city area, respectively. We

confirm that the proposed method provides stable buffer status and seamless

streaming media service. When a pedestrian uses streaming media service, a buffer

status of a MS is stable in every case, because a MS can be provided stable

2Mbps bandwidth.

6. Summary

As a result of improvements in mobile wireless internet technologies, high speed

moving users are able to access a streaming media service using PDAs, laptops,

mobile phones and so on. However, mobile wireless networks have variable

bandwidths depending on the speed and location of clients. These characteristics

- 82 -

make it hard to support stable Quality of Service (QoS) streams for high speed

mobile clients.

In this chapter, a client mobility-based media stream prefetching method to

guarantee stable QoS in high speed internet environment like a Mobile WiMAX,

was proposed. In proposed method, high speed moving clients is joint a group

depending on their characteristics and provided streaming media service according

to a joint group. Mobile clients can change their group depending on their

situation. In each group, clients' direction and speed are predicted. Based on client

grouping and prediction of client's direction and speed, media streams are

prefetched against disconnect and latency caused by handover. From the

experimental results, we confirm that the proposed method provides stable buffer

status and seamless streaming media service in each group with various media

bit-rates.

- 83 -

Chapter V

Conclusion and Future Work

In this dissertation, three issues in streaming media service for mobile clients was

studied for a integrated transcoding media streaming service system. First issue was

how to guarantee quality of service (QoS) over wireless network. Second issue was

hot to guarantee QoS for various clients. Last issue was how to guarantee QoS for

fast moving clients.

For first issue, the Network Adaptive Autonomic Transcoding Algorithm

(NAATA) was proposed to support streaming media service for mobile clients. The

proposed algorithm decides on target transcoding bit-rates in real-time according to

the wireless network state. Since it protects continuous transmission failures for

streaming media data, seamless and stable streaming media services are provided

for mobile clients. In our experiments, the NAATA reduced transmission failures of

80% and 40% when compared with the legacy transcoding system and the ANAT

system, respectively. We also established that the NAATA has less overhead and

long time intervals between transmission failures. Based on these advantages, we

confirmed that the NAATA provides a more seamless streaming media service for

mobile clients, without jittering or ceasing phenomena.

For second issue, a new load distribution method was proposed for fair

transcoding load distribution in the distributed transcoding servers. The proposed

method controls and distributes transcoding requests based on transcoding time

estimation for distributed transcoding environments. In our experimental distributed

- 84 -

transcoding servers, we evaluated the scalable performance of the RR, WRR,

RWLD and TELD methods. Because the RR and WRR method did not consider

the characteristic of transcoding jobs, it cannot satisfy the QoS requirement.

Therefore, because some specific servers suffer from heavy transcoding load, it did

not show good performance scalability. The RWLD method considers only three

kinds of transcoding media grades, which are not enough to estimate the

transcoding times for various mobile devices. As a result, even if the number of

transcoding servers is increased, the RWLD should be able to limit the performance

scalability. The TELD method distributes transcoding jobs based on the estimated

transcoding time according to the characteristic of target media and transcoding

servers. As a result, we confirmed that the proposed TELD method provided more

linear performance scalability than other load distribution.

For third issue, a client mobility-based media stream prefetching method to

guarantee stable QoS in high speed internet environment was proposed. In proposed

method, high speed moving clients was joint a group depending on their

characteristics and provided streaming media service according to a joint group.

Mobile clients could change their group depending on their situation. In each

group, clients' direction was predicted, and media streams were prefetched against

disconnect and latency caused by handover. The proposed method was experimented

and evaluated that buffer state was stable with handover for streaming media

service.

In the future work, we plan to evaluate the client mobility-based media stream

prefetching method in real environments. Also we plan to develop a integrated

transcoding media streaming service system.

- 85 -

References

[1] Dinkar Sitaram, Asit Dan, Multimedia Servers: Applications, Environments, and
Design, Morgan Kaufmann Publishers, 2000.

[2] Wu-chi Feng and Ming Liu, "Critical Bandwidth Allocation Techniques for Stored
Video Delivery Across Best-Effort Networks," Proc. The 20th Intl. Conf. on
Distributed Computing Systems, pp. 201-207, Apr. 2000.

[3] David H.C. Du and Yen-Jen Lee, "Scalable Server and Storage Architectures for
Video Streaming," Proc. IEEE Intl. Conf. on Multimedia Computing and Systems,
pp. 191-206, Jun. 1999.

[4] Florin Lahan, Irek Defee, Marius Vlad, Aurelian Pop, Prakash Sastry, "Integrated
system for multimedia delivery over broadband ip networks," IEEE Transactions on
Consumer Electronics, Vol. 48, No.3, pp.564~565, 2002.

[5] C. Li, G. Peng, K. Gopalan, and T. Chiueh, "Performance guarantees for
cluster-based internet services", Proceedings of the 23rd International Conference on
Distributed Computing Systems, pp378- 385, May 2003

[6] Sumit Roy, Michele Covell, John Ankcorn, Susie Wee, Takeshi Yoshimura, "A
System Architecture for Managing Mobile Streaming Media Services," 23rd
International Conference on Distributed Computing Systems Workshops (ICDCSW'03),
pp.408-419, 2003.

[7] J. Guo, F. Chen, L. Bhuyan, and R. Kumar, "A cluster-based active router
architecture supporting video/audio stream transcoding services", Proceedings of the
17th International Parallel and Distributed Processing Symposium, pp. 446- 453, Apr.
2003.

[8] S. Chandra, A. Gehani, C. S. Ellis, and A. Vahdat, "Transcoding characteristics of
web images", Proceedings of the SPIE/ACM Multimedia Computing and Networking
(MMCN2001), Jan. 2001.

[9] Dongmahn Seo, Joahyoung Lee, Yoon Kim, Changyeol Choi, Hwangkyu Choi,
Inbum Jung, "Load Distribution Strategies in Cluster-based Transcoding Servers for

- 86 -

Mobile Clients," Lecture Notes in Computer Science, Vol. 3983, pp. 1156-1165, May
2006.

[10] Dongmahn Seo, Joahyoung Lee, Yoon Kim, Changyeol Choi, Manbae Kim, Inbum
Jung, "Resource Consumption-Aware QoS in Cluster-based VOD Servers," Journal of
Systems Architecture: the EUROMICRO Journal, Vol. 53 , Issue 1, pp. 39-52, Jan.
2007.

[11] Harini Bhradvaj, Anupam Joshi, Sansanee Auephanwiriyakul, "An Active Transcoding
Proxy To Support Mobile Web Access," Proc. Intl. Conf. on Reliable Distributed
System, pp 118-123, 1998.

[12] Anthony Vetro, Huifang Sun, "Media Conversions to Support Mobile Users," Proc.
IEEE Canadian Conf. on Electrical and Computer Engineering, pp. 607-612, May.
2001.

[13] Behrouz A. Forouzan, Data Communications and Networking 2nd, Mc Graw Hill,
2001.

[14] Surendar Chandra, Carla Schlatter Ellis and Amin Vahdat, "Differentiated Multimedia
Web Services Using Quality Aware Transcoding", Proc. IEEE INFOCOMM 2000,
pp.961-969, 2000,

[15] Susie Wee, John Apostolopoulos, Wai-tian Tan, Sumit Roy, "Research and Design of
a Mobile Streaming Media Content Delivery Network," Proc. IEEE ICME, July 2003,
pp. I-5-8, 2003.

[16] Jacob Chakareski, Pascal Frossard, "Adaptive Systems for Improved Media Streaming
Experience", IEEE Communications Magazine, Vol. 45, Issue 1, pp. 77-83, 2007.

[17] P. A. Chou, Zhourong Miao, "Rate-Distortion Optimized Streaming of Packetized
Media", IEEE Trans. Multimedia, Vol. 8, No. 2, pp. 390-404, 2006.

[18] Jitendra Padhye, Jim Kurose, Don Towsley, Rajeev Koodli, "A Model Based
TCP-Friendly Rate Control Protocol", NOSSDAV99, 1999.

[19] Seongho Cho, Heekyoung Woo, Jong-won Lee, "ATFRC: Adaptive TCP Friendly
Rate Control Protocol", Lecture Notes in Computer Science, Vol. 2662, pp. 171-180,
2003.

[20] Eddie Kohler, Mark Handley, Sally Floyd, "Designing DCCP: Congestion Control
Without Reliability", SIGCOMM'06, pp. 27-38, 2006.

[21] Ningning Hu, Peter Steenkiste, "Evaluation and Characterization of Available
Bandwidth Probing Techniques", IEEE JSAC Special Issue in Internet and WWW

- 87 -

measurement, Mapping and Modeling, Vol. 21(6), pp. 879-894, 2003.

[22] James F. Kurose, Keith W. Ross, Computer Networking - A Top-down Approach
Featuring the Internet, Addison Wesley, 2004.

[23] Ningning Hu, Peter Steenkiste, "Estimating Available Bandwidth Using Packet Pair
Probing", Technical Report CMU-CS-02-116, 2002.

[24] http://ffmpeg.org/, ffmpeg open source project homepage.

[25] http://www.mplayerhq.hu/, mplayer open source project homepage.

[26] Jiani Guo, Laxmi Narayan Bhuyan, "Load Balancing in a Cluster-Based Web Server
for Multimedia Applications," IEEE Transaction on Parallel and Distributed Systems,
Vol. 17, No. 11, pp. 1321-1334, Nov. 2006.

[27] Dongmahn Seo, Nansook Heo, Jongwoo Kim, Inbum Jung, "Transcoding Load
Estimation Method for Load Balance on Distribution Transcoding Environments,"
Journal of KIISE : Computer Systems and Theory, Vol. 35, No. 10, pp. 466-475,
Oct. 2008.

[28] http://www.mpeg.org/, mpeg homepage.

[29] "2008 Survey on the Wireless Internet Use," National Internet Development Agency
of Korea, Dec. 2008.

[30] Brian K. Schmidt, Monica S. Lam, K. Duane Northcutt, "The Interactive Performance
of SLIM: A Stateless, Thin-client Architecture," ACP SOSP' 99, pp.31-37, 1999.

[31] Monica Paolini, "Testing WiMAX Performance in the Clear Network in Portland",
WiMAX Forum, Jan. 2009.

[32] IEEE 802.16 WG, "IEEE Standard for Local and Metropolitan Area Networks part
16", IEEE 802.16 Standard, Dec. 2005.

[33] WiMAX Forum, "WiMAX Forum Network Architecture - Architecture Tenets,
Reference Model and Reference Points Base Specification",
DRAFT-T32-001-R015v01-O, Sep. 2009.

[34] Sundan Bose, Arputharaj Kannan, "Adaptive Multipath Multimedia Streaming
Architecture for Mobile Networks with Proactive Buffering Using Mobile Proxies",
Journal of Computing and Information Technology, Vol. 15, pp.215-226, Mar. 2007.

[35] Minsik Shim, Hwasung Kim, "A Handover Mechanism for Preventing Out-of
Sequence Problems in WiBro", Proc. of the KIISE Korea Computer Congress 2006,
Vol. 35, No. 1(D), pp.184-186, 2006.

- 88 -

[36] ETRI, "The HPi Handover Specification", ETRI, 2003.

[37] TTA, "Specifications for 2.3GHz band Portable Internet Service Physical & Medium
Access Control Layer", TTA Standard, TTAS.KO-06.0082, Jun. 2005.

[38] WiMAX Forum, "WiMAX Forum Network Architecture - Stage 3 - Annex: R6/R8
Anchored Mobility Scenarios", WMF-T33-0030R010v04, Feb. 2009.

[39] Hee-Jin Jang, Youn-Hee Han, Seung-Hee Hwang, "A Cross-layering Handover
Scheme for IPv6 Mobile Station over WiBro Networks", Journal of KIISE :
Information Networking, Vol. 34, No. 1, pp.48-61, Feb. 2007.

[40] IEEE 802.16 TGe WG draft, "Amendment for Physical and Medium Access Control
Layers for Combined fixed and Mobile Operation in Licensed Bands", 802.16e/D9,
Jun. 2005.

[41] WiMAX Network WG document, "End-to-End Network Systems Architecture", (Stage
2: Architecture Tenets, Reference Model and 12 Reference Points), Sep. 2005.

[42] Charles E. Perkins, "IP Mobility Support for IPv4". RFC 3344, Aug. 2002.

[43] David B. Johnson, Charles E. Perkins, Jari Arkko, "Mobility Support in IPv6", RFC
3775, 2004.

[44] Nicolas Montavont, Thomas Noel, "Handover Management for Mobile Nodes in IPv6
Networks", IEEE Communications Magazine, Vol. 40, No. 8, pp.38-43, Aug. 2002.

[45] Hesham Soliman, Mobile IPv6 : Mobility in a Wireless Internet, Addison Wesley,
2004.

[46] Lila Dimopoulou, Georgios Leoleis, Iakovos S. Venieris, "Fast Handover Support in
a WLAN Environment: Challenges and Perspectives", IEEE Network, Vol. 19, No. 3,
pp.14-20, Jun. 2005.

[47] Rajeev Koodli, "Fast Handovers for Mobile IPv6", RFC 4068, Jul. 2005.

[48] IEEE 802.21 WG document, IEEE Standard for Local and Metropolitan Area
Networks: Media Independent Handover Services, P802.21/D00.01, Jul. 2005.

[49] Vivek G. Gupta, David Johnston, "IEEE 802.21, A Generalized Model for Link
Layer Triggers", IEEE 802.21 WG, Mar. 2004.

[50] Xiaoyu Liu, Youn-Hee Han, "Interaction between L2 and Upper Layers in IEEE
802.21", IEEE 802.21 WG, Mar. 2004.

[51] Pete McCann, "Mobile IPv6 Fast Handovers for 802.11 Networks", RFC 4260, Nov.
2005.

- 89 -

[52] Fumio Teraoka, Kazutaka Gogo, Kochiro Mitsuya, Rie Shibui, Koki Mitani, "Unified
Layer 2 (L2) Abstractions for Layer 3 (L3)-Driven Fast Handover". RFC 5184, May.
2008.

[53] Gyodu Koo, Youngsong Mun, "Improved Fast Handover Protocol using HMIPv6
based on IEEE 802,16e Network", The KIPS Transactions : Part C, Vol. 14, No. 6,
pp.503-508, Oct. 2007.

[54] Hesham Soliman, Claude Castelluccia, Karim El Malki, Ludovic Bellier, "Hierarchical
Mobile IPv6 Mobility Management", RFC 4140, Aug. 2005.

[55] KyoungHye Lee, Youngson Mun, "An Efficient Macro Mobility Scheme Supporting
Fast Handover in Hierarchical Mobile IPv6", Lecture Notes in Computer Science,
Vol. 3480, pp.408-417, May. 2005.

[56] Indra Vivaldi, Mohd Hadi Habaebit, Borhanuddin Mohd Ali, V. Prakash, "Fast
Handover Algorithm for Hierarchical Mobile IPv6 Macro-Mobility Management", The
9th Asia-Pacific Conference on Communications, Vol. 2, pp.630-634, Sep. 2003.

[57] Andre E. Bergh, Neco Ventura, "PA-FMIP: a Mobility Prediction Assisted Fast
Handover Protocol", IEEE Military Communications Conference, pp.1-7, Oct. 2006.

[58] George Lui, Gerald Maguire Jr., "A Class of Mobile Motion Prediction Algorithms
for Wireless Mobile Computing and Communications", Mobile Networks and
Applications, Vol 1, No. 2, pages 113-121, Jun. 1996.

[59] Gokhan Yavas, Dimitrios Katsaros, Ozgur Ulusoy, Yannis Manolopoulos, "A data
mining approach for location prediction in mobile environments", Data and
Knowledge Engineering, Vol. 54, No. 2, pp.121-146, Aug. 2005.

[60] Rakesh Agrawal, Ramakrishnan Srikant, "Fast Algorithms for Mining Association
Rules. Proc. 20th. Conf Very Large Data Bases", Proceeding of 20th Internationl
Conference on Very Large Data Bases, pp487-499, Sept 1994.

[61] Rakesh Agrawal, Ramakrishnan Srikant, "Mining Sequential Patterns", Proceeding of
IEEE Conference on Data Engineering, pp.3-14, Mar. 1995.

[62] Alexandros Nanopoulos, Dimitrios Katsaros, Yannis Manolopoulos, "Effective
Prediction of Web-user Accesses: A Data Mining Approach", Proceeding of the
WebKDD Workshop, 2001.

[63] Alexandros Nanopoulos, Dimitrios Katsaros, Yannis Manolopoulos, "A data mining
algorithm for generalized web prefetching", IEEE Transaction on Knowledge Data
Engineering, Vol.15, No. 5, pp.1155-1169, Oct. 2005.

- 90 -

[64] Fang Feng, Douglas S. Reeves, "Explicit Proactive Handoff with Motion Prediction
for Mobile IP", Proceeding of the Wireless Communications and Networking
Conference, Vol. 2, pp.855-860, Mar. 2004.

[65] N. Van den Wijngaert, C. Blondia, "A Predictive Low Latency Handover Scheme for
Mobile IP" Proceeding of ICMU'05, Apr. 2005.

[66] Ferenc Bodon, "A Trie-based APRIORI Implementation for Mining Frequent Item
sequences", Proceeding of OSDM'05, pp.56-65, Aug. 2005.

[67] Shiow-yang Wu, Jungchu Hsu, Chieh-Ming Chen, "Headlight Prefetching and
Dynamic Chaining for Cooperative Media Streaming in Mobile Environments", IEEE
Transaction on Mobile Computing, Vol. 8, No. 2, pp.173-187, Feb. 2009.

[68] Minoru Etoh, Takeshi Yoshimura, “Wireless Video Applications in 3G and Beyond”,
IEEE Wireless Communications, Vol. 12, No. 4, pp. 66-72, Aug. 2005.

[69] Frank H.P. Fitzek, Martin Reisslein, “A Prefetching Protocol for Continuous Media
Streaming in Wireless Environments”, IEEE Journal on Selected Areas in
Communications, Vol. 19, No. 10, pp.2015-2028, Oct. 2001.

[70] Baochun Li and Karen H. Wang, “NonStop: Continuous Multimedia Streaming in
Wireless Ad Hoc Networks with Node Mobility”, IEEE Journal on Selected Areas in
Communications, Vol. 21, No. 10, pp.1627-1641, Dec. 2003.

[71] Anna Kyriakidou, Nikos Karelos, Alex Delis, “Video-Streaming for Fast Moving
Users in 3G Mobile Networks”, Proceeding of Fourth International Workshop on
Data Engineering for Wireless and Mobile Access, pp. 65-72, 2005.

[72] Guang-Tao Xue, Zhao-Qing Jia, Jin-Yuan You, Ming-lu Li, “Group Mobility Model
in Mobile Peer-to-Peer Media Streaming System”, Proceeding of 2004 IEEE
International Conference on Services Computing, pp. 527-530, Sep. 2004.

[73] Min Qin, Roger Zimmermann, Leslie S. Liu, “Supporting Multimedia Streaming
between Mobile Peers with Link Availability Prediction”, Proceeding of the 13th
ACM International Conference on Multimedia, 2005.

[74] Meng Guo, Mostafa H. Ammar, Ellen W. Zengura, “V3: A Vehicle-to-Vehicle Live
Video Streaming Architecture”, Proceeding of Third IEEE Internation Conference on
Pervasive Computing and Communications, pp.171-180, Mar. 2005.

[75] Xiaoxin Wu, Bhargava Bharat, “AO2P: Ad Hoc On-Demand Position-Based Private
Routing Protocol”, IEEE Transaction on Mobile Computing, Vol. 4, No. 4,
pp.335-348, Aug. 2005.

- 91 -

[76] Ouri Wolfson, Bo Xu, Sam Chamberlain, Liqin Jiang, “Moving Objects Databases:
Issues and Solutions”, Proceedings of 10th International Conference on Statistical and
Scientific Database Management, pp.111-122, Jul. 1998.

[77] Ouri Wolfson, A. Prasad Sistla, Sam Chamberlain, Yelena Yesha, “Updating and
Querying Databases That Track Mobile Units”, Distributed and Parallel Databases,
Vol.7, No. 3, pp. 257-287, Jul. 1999.

[78] http://www.ktdb.go.kr, Korea Transport Database.

[79] http://info.korail.com/2007/eng/eng_index.jsp, Korea Railroad Information.

[80] http://www.ex.co.kr/portal/roa/tst/tst1/roa_tst01.jsp, Transport Information page at Korea
Expressway Corporation,

이동 단말을 위한

스트리밍 미디어 서비스 연구

서 동 만

강원대학교 대학원 컴퓨터정보통신공학과

최근 무선통신 기술의 발전으로 PC뿐만 아니라 PDA, 노트북, 네비게이터, 무

선 IP-TV 단말, 휴대전화 등 다양한 이동 단말 장치를 통하여 멀티미디어 서비

스를 제공받을 수 있게 되었다. 스트리밍 미디어 서비스를 위한 영상 정보의

양이 텍스트 기반의 데이터 정보량에 비하여 매우 크다. 또한, 이동 단말 장치

는 하드웨어의 성능 제약이 있으며, 낮은 네트워크 대역폭을 가지는 무선망에

서 동작하기 때문에, 이동 단말을 위한 스트리밍 미디어 서비스에 대한 연구가

필요하다.

본 논문에서는 이동 단말을 위한 스트리밍 미디어 서비스를 제공하기위한 통

합 트랜스코딩 미디어 스트리밍 서비스 시스템을 제안한다. 제안하는 시스템은

다양한 무선 네트워크에서 다양한 무선 단말을 통해 스트리밍 미디어 서비스를

이용하는 사용자들에게 안정적인 QoS를 제공하기 위해서는 무선 통신 망에서

의 불안정한 대역폭에 알맞은 트랜스코딩 기법과 다양한 무선 단말에 QoS를

제공하기 위한 분산 트랜스코딩 서버에서의 부하 분산 기법 및 진입 제어 기법

이 필요하다. 또한, 빠르게 이동하는 무선 단말에서 스트리밍 미디어 서비스를

제공하는 경우에 발생하는 빈번한 핸드오버와 셀의 바깥 영역에서의 낮은 대역

폭에서의 안정적인 QoS를 제공하기 위한 기법이 필요하다.

본 논문에서는 이러한 문제들을 해결하기 위한 세 가지 방안은 제안한다. 먼

저, 이동 단말에게 안정적인 스트리밍 서비스를 제공하기 위한 Network

Adaptive Autonomic Transcoding Algorithm (NAATA)를 제안한다. 제안한 알고리

즘은 실시간으로 무선 네트워크의 상황에 맞추어 트랜스코딩 비트율을 변경한

다. 연속적인 스트리밍 미디어의 전송 장애를 방지하게 때문에 안정적이고 끊

임없는 스트리밍 미디어 서비스가 가능하다.

두 번째로, 분산 트랜스코딩 서버를 위한 부하분산 알고리즘을 제안한다. 제

안한 알고리즘은 분산 트랜스코딩 서버의 트랜스코딩 시간을 예측하고 이를 기

반으로 부하를 분산하고 진입을 제어한다. 제안한 알고리즘은 트랜스코딩 요구

특성과 스트리밍 미디어 데이터의 특성을 고려하기 때문에, 기존의 알고리즘에

비하여 높은 성능 확장성을 가짐을 실험을 통해 확인한다.

마지막으로, 와이브로와 같은 고속 무선 인터넷 환경에서의 안정적인 스트리

밍 미디어 서비스를 위한 단말 이동성 기반의 미디어 스트림 선인출 기법을 제

안한다. 제안하는 기법에서는 고속 이동 단말의 특성을 고려하여 그룹으로 분

류하고, 그 특성에 따라 이동 방향과 속도를 예측한다. 이를 기반으로 하여 핸

드오버 시에 발생할 수 있는 버퍼 고갈 상태와 전달 지연 상태를 예방한다. 제

안한 방법은 실험을 통하여 고속 이동 단말 내의 스트리밍 미디어 버퍼의 상태

를 안정적으로 유지함을 보인다.

Curriculum Vitae

Name : Dongmahn Seo
Date of Birth : October 7, 1976
email : sarum@kangwon.ac.kr

◎ Education

2004.03 ~ 2010.02 Dept. of Computer & Information Telecommunication Engineering
(Ph.D)

Kangwon National University
2002.03 ~ 2004.02 Dept. of Computer & Information Telecommunication Engineering (MS)

Kangwon National University

1995.03 ~ 2002.02 Dept. of Computer Engineering (BS)

Kangwon National University

◎ Publications
① International Journal

1. Dongmahn Seo, Inbum Jung, "Network-adaptive Autonomic Transcoding
Algorithm for Seamless Streaming Media Service of Mobile Clients",
Multimedia Tools and Applications, Published online, Oct. 2009.

2. Dongmahn Seo, Joahyoung Lee, Yoon Kim, Changyeol Choi, Manbae Kim,
Inbum Jung, “Resource Consumption-Aware QoS in Cluster-based VOD
Servers,” Journal of Systems Architecture: the EUROMICRO Journal,
Volume 53 , Issue 1, pp. 39-52, Jan. 2007.

3. Dongmahn Seo, Joahyoung Lee, Yoon Kim, Changyeol Choi, Hwangkyu
Choi, Inbum Jung, “Load Distribution Strategies in Cluster-based Transcoding

Servers for Mobile Clients,” Lecture Notes in Computer Science, Vol. 3983,
pp. 1156-1165, May 2006.

4. Joahyoung Lee, Dongmahn Seo, Yoon Kim, Changyeol Choi, Hwangkyu
Choi, Inbum Jung, “Thin-Client Computing for Supporting the QoS of
Streaming Media in Mobil Device,” Lecture Notes in Computer Science, Vol.
3981, pp. 562-571, May 2006.

5. Dongmahn Seo, Joahyoung Lee, Dongkook Kim, Yoon Kim, and Inbum
Jung “An Effective Failure Recovery Mechanism with Pipeline Computing in
Clustered-Based VOD Servers”, Lecture Notes in Computer Science, Vol.
3768, pp. 12-23, Nov. 2005.

② International Conferences

1. Dongmahn Seo, Heonguil Lee, and Inbum Jung “Transcoding Load
Distribution Policy for Wireless Mobile Clients”, The proceeding of the 2008
International Conference on Computer Design (CDES'08), Aug. 2008.

2. Dongmahn Seo, Hanmin Bang, Nansook Heo, Inbum Jung, and Yoon Kim
“Experimental Evaluation for Scalability and QoS in a VOD System”,
Proceeding of the IEEE 2007 International Conference on Computational
Science and its Applications, pp. 33-38, Sep. 2007.

3. Nansook Heo, Dongsun Lim, Dongmahn Seo, Inbum Jung, and Yoon Kim
“Load Distribution Method and Admission Control for Streaming Media QoS
in Distributed Transcoding Servers”, Proceeding of the IEEE 2007
International Conference on Computational Science and its Applications, pp.
39-45, Sep. 2007.

4. Y. Kim, I.B. Jung, D.M. Seo, J.Y. Pyun, S.H. Park “Advanced Real-Time
Rate Control for Low Bit Rate Video Communication”, International
Conference on Intelligent Computing, pp. 275-284, Aug. 2005.

③ Domestic Journal

1. 서동만, 허난숙, 김종우, 정인범, “분산 트랜스코딩 환경에서 부하 균형을

위한 트랜스코딩 부하 예측 기법”, 한국정보과학회 논문지 제35권 9-10
호, 466~475페이지 2008년 10월

2. 한우람, 허난숙, 박총명, 서동만, 정인범, “이동 단말에서 끊임없는 스트리

밍 미디어를 위한 오토노믹 멀티미디어 트랜스코딩 알고리즘”, 정보과학

회 논문지, 제13권 제5호, 260~270페이지,2007년 10월

3. 서동만, 이좌형, 방철석, 임동선, 김윤, 정인범, “클러스터 VOD 서버에서

선호도 기반 세그먼트 버퍼 대체 기법”, 정보과학회논문지 제33권, 제11
호, 797~809페이지, 2006년 12월.

4. 서동만, 이좌형, 최면욱, 김윤, 정인범, “효과적인 트랜스코딩 부하 분산을

위한 자원가중치 부하분산 정책”, 정보과학회논문지 제11권, 제5호,
401~415페이지, 2005년 10월.

5. 서동만, 방철석, 이좌형, 김병길, 정인범, “리눅스 기반의 클러스터 VOD
서버와 내장형에 클라이언트의 구현”, 정보과학회논문지 제10권, 제6호,
435~447페이지, 2004년 12월.

④ Domestic Conference

1. 방한민, 박총명, 서동만, 김학수, 정인범, "효율적인 부하 분산 정책을 위

한 WMI기반 VOD서비스의 설계 및 구현", 한국정보처리학회 추계학술발

표대회 논문집, 제15권, 제2호, pp. 1272~1275, 2008년 9월.

2. 김종우, 허난숙, 서동만, 정인범, "트랜스코딩 서버 간 부하 분산을 위한

트랜스코딩 부하 예측", 한국정보처리학회 춘계학술발표대회 논문집, 제

15권, 제1호, pp. 909~912, 2008년 5월.

3. 한우람, 허난숙, 박총명, 서동만, 정인범, "디지털 전자액자를 위한 네트워

크 적응적 스트리밍 미디어 서비스 설계 및 구현", 한국정보과학회 추계

학술대회발표 논문집, 제34권, 제2호, pp. 477~481, 2007년 10월.

4. 한우람, 허난숙, 서동만, 정인범, "무선 네트워크상에서 전송장애 감지를

이용한 끊김 없는 스트리밍 미디어 서비스", 2007년 한국컴퓨터종합학술

대회 논문집 제 34권 제 1호 121-122, 2007년 6월

5. 방한민, 한우람, 허난숙, 서동만, 정인범, "이동 사용자를 위한 네트워크

적응적 실시간 트랜스코더를 이용한 VOD 서비스의 구현", 2007년도 한

국정보처리학회 춘계 학술발표논문집 제 14권 제 1호 1217-1220, 2007년

5월

6. 허난숙, 한우람, 이좌형, 서동만, 김윤, 정인범, "이동 사용자를 위한 적응

적 트랜스코딩 서비스의 구현", 2006년도 한국정보과학회 가을 학술발표

논문집 제 33권 제 2호 183 ~ 188 페이지, 2006년 10월 20일.

7. 허난숙, 박총명, 서동만, 김윤, 정인범, "VOD 서비스에서 특산품 온라인

쇼핑 시스템의 구현", 정보처리학회 2005년 춘계 학술발표논문집 제 12권

제1호 1417 ~ 1420 페이지, 2005년 5월 13일.

8. 서동만, 박총명, 김동국, 김윤, 정인범, "이질적인 클라이언트 플랫폼을 위

한 클러스터 VOD 시스템", 정보처리학회 2005년 춘계 학술발표논문집

제 12권 제1호 1413 ~ 1416 페이지, 2005년 5월 13일.

9. 박총명, 허난숙, 김동국, 서동만, 이좌형, 김윤, 정인범, "센서 네트워크를

이용한 교량 안전진단 시스템 구현", 정보처리학회 2005년 춘계 학술발표

논문집 제 12권 제1호 1409 ~ 1412 페이지, 2005년 5월 13일.

10. 김동국, 박총명, 허난숙, 서동만, 이좌형, 김윤, 정인범, "무선 센서네트워

크를 이용한 구조물 하중 감지 시스템", 정보처리학회 2005년 춘계 학술

발표논문집 제 12권 제1호 1319 ~ 1322 페이지, 2005년 5월 13일.

11. 이좌형, 서동만, 방철석, 김병길, 박총명, 정인범, "클러스터형 VOD 서버

에서 고가용성을 고려한 자체 복구 시스템", 한국정보처리학회 2003년11
월 추계학술발표논문집, pp. 149 ~ 152, 제10권 2호, 2003년 11월 14일 ~
15일.

12. 이좌형, 서동만, 방철석, 김병길, 박총명, 정인범, "클러스터형 VOD 서버

에서 장애 복구의 설계 및 구현", 한국정보과학회 2003년10월 추계학술발

표논문집, 제30권 2호, pp.427 ~ 429, 2003년 10월 24일 ~ 25일.

13. 서동만, 방철석, 이좌형, 김병길, 박총명, 정인범, "클러스터 VOD 시스템

에서의 내장형 클라이언트 플랫폼 설계 및 구현", 한국정보처리학회 2003
년도 춘계학술발표논문집, 제10권 제1호(중), pp.1153~1156, 2003년 5월

16일 ~ 17일.

14. 서동만, 방철석, 이좌형, 김병길, 정인범, "QoS를 지원하기 위한 리눅스

클러스터 VOD 서버의 성능 분석", 한국정보과학회 2003 봄 학술발표논

문집, 제30권 제1호(C), pp.301~303, 2003년 4월 24일 ~ 25일.

