
Parallel Failure Recovery Techniques in Cluster-based Media Servers 

  
Joahyoung Lee, Heonguil Lee, and Inbum Jung* 

Department of Computer, Information, and Communications 
Kangwon National University, Korea 

 
Jinnie4u@.kangwon.ac.kr, hglee@kangwon.ac.kr, ibjung@kangwon.ac.kr(corresponding author) 

 
Abstract 

For large scale VOD service, cluster servers are spotlighted to 
their high performance and low cost. A cluster server consists of 
a front end node and multiple backend nodes. Though the 
increase of backend nodes provides the more QoS streams, the 
possibility of failures in backend nodes is proportionally 
increased. The failure causes not only the stop of all streaming 
services but also the loss of current playing positions. In this 
paper, when a backend node becomes a failed state, recovery 
mechanisms are studied to support the unceasing streaming 
service. Without considering the characteristic of cluster-based 
servers and MPEG media, the basic RAID techniques causes the 
performance bottleneck in the internal network and also results 
in the inefficiency CPU usage of backend nodes. To address 
these problems, a new failure recovery mechanism is proposed 
based on the pipeline computing concept. The proposed method 
distributes the network traffics needed in the process of 
recovery and utilizes the available CPU computing power of 
backend nodes. In experiments, it provides the improved 
performance of cluster-based VOD servers as well as the 
continuous streaming media service in the failed state of a 
backend node. 
Key words: 
streaming media, Autonomic recovery, pipeline computing, 
cluster servers  

1. Introduction  

Recent advanced computer and communication 
technologies have provide economically feasible 
multimedia services such as VOD(Video-On-Demand), 
digital library and e-learning. In these multimedia 
services, since the video data are given a great deal of 
weight due to the preference of clients to lively motion 
expressions, the VOD service is the most prominent 
multimedia application [1, 2]. In contrary to traditional 
file servers, VOD servers are subject to real-time 
constraints while storing, retrieving and delivering the 
movie data into the network. Since the ceasing and 
                                                 
*Corresponding Author 
This research was financially supported by the Ministry of 
Coomerce, Industry and Energy(MOCIE) and Korea Industrial 
Technology Foundation(KOTEF) through the Human Resource 
Training Project for Regional Innovation 

jittering streaming videos are meaningless for VOD 
clients, the streaming media should be supplied for each 
client within designated QoS(Quality Of Service) 
criterion. To support the QoS, servers must be able to 
continuously deliver video data at a constant interval to 
VOD clients. And also, even in the failure of server 
components, the streaming service should be re-continued 
within the human acceptable MTTR (Mean Time To 
Repair) value [3, 4].  

Recently cluster server architecture has been exploited 
in the areas of Internet Web, database, game and VOD 
servers [9]. It has an advantage of the ratio of 
performance to cost and is easily extended from the 
general PC equipments. The cluster server architecture 
usually consists of a front-end node and multiple backend 
nodes. It is traditional decentralized systems to treat 
specific application fields. When this architecture model 
is used as VOD servers, the video data are distributed 
into several backend nodes. The performance of storage 
devices could be achieved accordingly as the number of 
backend nodes increase. However, even if the cluster 
server can be scaled by just adding new backend nodes, 
the probability of the failure of nodes also increases in 
proportion to the number of backend nodes. The fault of 
nodes causes not only the stop of all streaming service 
but also the loss of the being serviced positions of all 
playing movies. In the VOD service, since QoS streams 
are guaranteed to all clients even in the failure of nodes, 
the recovery mechanisms are necessary for dealing with a 
realistic VOD service. In this paper, the autonomous 
recovery mechanisms in cluster-based VOD servers are 
studied to support QoS streams while a backend node 
becomes a failure state. 

To study the failure events during the actual VOD 
service, we implement a cluster-based VOD servers 
composed of general PCs and adopts parallel processing 
for MPEG media to support a large number of clients. 
From the implemented VOD server, we evaluate a legacy 
recovery system composed of the advantages of RAID-3 
and RAID-4 algorithms. These RAID levels are known as 
providing very high speed data transfer rate suitable for 
the video streaming. However, this recovery system 
causes the performance bottleneck on the input network 



of the recovery node and shows the inefficiency CPU 
usage in backend nodes. To address these issues, we 
propose a new failure recovery system based on pipeline 
computing over all survived backend nodes. The 
proposed system autonomously distributes not only the 
workloads composed of exclusive-OR operations but also 
the network traffics across all backend nodes. Since all 
survived backend nodes are participated in the total 
recovery operations, the proposed method provides the 
improved performance of cluster-based VOD servers as 
well as the continuous streaming media service even in 
the failure state of a backend node. 

The rest of this paper is organized as follows. Section 2 
describes related work. Section 3 explains our cluster-
based VOD servers and the management of video blocks. 
In section 4, a new recovery strategy by the pipeline 
computing is proposed to utilize the resources of backend 
nodes. Section 5 describes experimental environments. In 
Section 6, the results of performance evaluation are 
shown. Section 7concludes the paper. 

2. Related Work 

Many researches were undertaken for VOD systems to 
provide a stable service to more clients under the various 
client requirements and the limited resources [6, 7, 8]. 
For commercially successful VOD service, in the case 
where the partial failure state occurs, the QoS streams 
could be substantially provided to clients within the 
limited MTTR value. The human acceptable MTTR value 
is a mandatory condition. It is one of the important QoS 
metrics for the outstanding VOD service. There has been 
much research in the area of fault tolerance for file, 
database and web servers. However, the streaming media 
have its intrinsic characteristic such as real time 
specifications. There have not been enough researches to 
guarantee the QoS streams without ceasing and jittering 
even in the partial failure state of VOD servers.  

Based on the mirror concept, several researches were 
performed for recovering the failed storage systems [9, 
10]. The Tiger video server was implemented on the 
mirror based storage system for VOD service [11]. The 
RMD(Rotational Mirrored Declustering) techniques are 
suggested to recover the failed disks or individual 
nodes[12]. However, these mirror based approaches have 
the inefficient usage of disk storages and also aggravate 
the burden of the recovery node. 

The RAID(Redundant Array of Inexpensive Disks)  
mechanisms are usually exploited to recover the failed 
disks or parallel nodes in clustered servers. In particular, 
the RAID-3, 4, 5 mechanisms are based on the parity 
based recovery algorithm [10, 13, 14]. In the RAID-3, the 
data block is striped and written on the data disks. Due to 

the fine striped unit, the numerous numbers of disk assess 
are necessary for retrieving the large video blocks. It may 
degrade the data transfer rate from disks. In the RAID-4, 
each entire block is written onto a disk. Since this method 
provides the coarse striped unit, the disk performance can 
be improved by retrieving once larger blocks every disk 
access. Both RAID-3 and RAID-4 has its own parity 
disks used in the recovery operations. In the RAID-5, the 
parity blocks in the same rank are spread out in 
distributed disks. After a backend node fails, all 
remaining nodes perform the total recovery operations 
individually. The parity blocks are distributed into all 
disks so that the network traffics between nodes highly 
increase to exchange those blocks. Under this working 
environment of RAID-5, since it is difficult to gauge the 
actual load of backend nodes in real time, the steady QoS 
streams are not guaranteed to VOD clients. 

Recently, the cluster server architecture has been 
utilized for various areas due to its low cost and high 
performance [5]. In particular, the VOD service has its 
intrinsic property to provide the streaming media to all 
clients in real time environment. Even if the failure of 
disks or backend nodes happens, the irregular ceasing and 
jittering streaming media should be solved within the 
human acceptable time period [3, 4]. However, until now, 
the recovery mechanism has not been studied deeply in 
the cluster-based VOD server. In particular, for the more 
commercialized VOD service, the recovery system 
should be studied on the characteristics of streaming 
media.  

For the reliable VOD service, our research was focused 
on both improving the performance of the recovery 
system and achieving the better MTTR value in the 
failure state. 

3. Cluster-based VOD Server 

3.1 Architecture of VODCA 

HS

node

Network

VODCA server

disk disk

disk disk

disk disk

disk disk

disk disk

disk disk

client

client

client

a video stream

connection request,

movie request,
control commands

movie lists

In
te

rn
a

l 
n

e
tw

o
rk

video streams

video streams

video streams

Movie 
fragments

Movie 
fragments

Movie 
fragments

MMS 

node

MMS 

node

MMS 

node

a video stream

a video stream

movie request,

control commands

movie request,control commands

a video stream

movie request,

control commands

movie request,

control commands

client

HS

node

Network

VODCA server

disk disk

disk disk

disk disk

disk disk

disk disk

disk disk

client

client

client

a video stream

connection request,

movie request,
control commands

movie lists

In
te

rn
a

l 
n

e
tw

o
rk

video streams

video streams

video streams

Movie 
fragments

Movie 
fragments

Movie 
fragments

MMS 

node

MMS 

node

MMS 

node

a video stream

a video stream

movie request,

control commands

movie request,control commands

a video stream

movie request,

control commands

movie request,

control commands

client  

Figure 1:  Architecture of  VODCA server 



For large scale VOD services, we implemented a 
cluster-based VOD server called as VODCA (Video On 
Demand on Clustering Architecture)[18]. The VODCA 
consist of a front-end node named as HS(Head-end 
Server) and several backend nodes known as 
MMS(Media Management Server). Figure 1 shows the 
architecture of our VODCA server and various VOD 
clients. Clients are working together with HS and MMS 
nodes. Throughout the internal network path between a 
HS node and MMS nodes, they exchange the working 
states and internal commands each other. 

The HS node not only receives clients’ requests but also 
manages MMS nodes to support QoS with the admission 
control. When new MPEG movies are enrolled, the HS 
splits them and distributes them into each MMS node. 
The MMS nodes transmit their stored movie fragments to 
clients under the supervision of the HS node. Each MMS 
node sends the present working status to the HS node 
periodically. This message operates as a heartbeat 
protocol between MMS nodes and a HS node.  

3.2 Stripping of Video Blocks    

The cluster server easily provides the parallel 
computing environment based on the high speed network 
among composed backend nodes and independent 
working spaces of each server. To apply parallel 
processing for MPEG movies, we stripe the movie files 
according to the defined granularity policy. After striping, 
the movie file is partitioned into many fragments and they 
are distributed into backend nodes with their header 
information. To exploit MPEG media characteristics in 
parallel processing, we use GOP size as a striping unit. 
Since each GOP has approximately equal running time in 
MPEG streams, the MPEG movies are split into GOPs 
and distributed into each node with their sequence 
number and size.  

 

1

5

9

13

17

21

25

29

33

37

2

6

10

14

18

22

26

30

34

38

3

7

11

15

19

23

27

31

35

39

4

8

12

16

20

24

28

32

36

40

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

MMS 1 MMS 2 MMS 3 MMS 4 Recovery
Node

1 2 3 4

P1

1

2

3

4

Video Block

Parity Block

P1

Parity Operation
( Exclusive OR )

1

5

9

13

17

21

25

29

33

37

2

6

10

14

18

22

26

30

34

38

3

7

11

15

19

23

27

31

35

39

4

8

12

16

20

24

28

32

36

40

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

MMS 1 MMS 2 MMS 3 MMS 4 Recovery
Node

1 2 3 4

P1

1

2

3

4

Video Block

Parity Block

P1

Parity Operation
( Exclusive OR )

 
Figure 2:  Striped video blocks and parity blocks 

The RAID mechanism is usually used to recover the 
inaccessible data in the failed disks. Various kinds of 
RAID levels are existed in commercial areas. In our 
research, RAID-3, 4 levels are used for the basic recovery 
system in our VODCA server. These levels are suitable 
for the video streaming service by supporting very high 
speed data transfer rates [13, 14]. 

In the RAID-4 algorithm, the parity block for same rank 
blocks should be generated on writes and recorded on the 
parity disk. Figure 2 shows the distributed video blocks in 
each MMS node and the parity blocks stored in a 
recovery node. For example, the parity block P1 is 
generated by the exclusive-OR operation to video blocks 
1, 2, 3, 4 and stored into the recovery node. 

The RAID-4 reduces the number of disk assess but it 
causes the problem in the process of aggregating the 
video blocks to recover the failure state. To address this 
problem, we use the RAID-3 algorithm when the video 
blocks are transferred and recovered. As mentioned 
above, since the RAID-3 supports the small stripe units 
during the recovery process, the large video blocks 
retrieved from the disk of MMS nodes are partitioned as 
small data units and they are transferred into the recovery 
node. From these small data, the recovery node gradually 
performs exclusive-OR operation to rebuild the failed 
video blocks.  

3.3 Recovery System on RAID 3,4 

Client

Recovery
Node

124

124

P124

3

3

3

P

MMS 2

MMS 4

MMS 3

MMS 1

HUB

HUB

1

4

2

VODCA

1
2

4
3

Video  block

P

Parity block

Parity Operation
( Exclusive OR )

Node Failure

Internal Network Path

External Network Path

internal
network

external
network

Client

Recovery
Node

124

124

P124

3

3

33

P

MMS 2

MMS 4

MMS 3

MMS 1

HUB

HUB

1

4

2

VODCA

1
2

4
3

Video  block

P

Parity block

Parity Operation
( Exclusive OR )

Node Failure

Internal Network Path

External Network Path

internal
network

external
network

 
Figure 3:  Architecture and video block flows in RS-BRM 

Figure 3 shows the architecture of the recovery system 
operated on basic RAID-4, 3 mechanisms [13,14]. We 
denote this recovery model as RS-BRM (Recover System 
based on Basic RAID Mechanisms) and adopt on our 
VODCA as a basic recovery system. As shown in this 
Figure, two network paths are existed. One is an external 
network for connecting between the MMS nodes and the 
VOD clients. Another network is an internal network 



path installed between all MMS nodes and a recovery 
node.  

When all MMS nodes are operated normally, MMS 
nodes transmit their stored video blocks to clients directly 
through the external network path. On the other hand, 
when a MMS node fails to run, the survived MMS nodes 
are sent the video blocks to both the clients and the 
recovery node. The recovery node regenerates the failed 
video blocks with the video blocks received from the 
MMS nodes and the parity blocks stored in its own disks. 
Since both MMS nodes and the recovery node use their 
internal network path for these recovery operations, the 
external network bandwidth just takes charge of 
streaming services to the VOD clients. For example, as 
shown in Figure 3, when the MMS 3 node fails, the 
recovery node regenerates the video block 3 by executing 
the exclusive-OR operation with the received video 
blocks 1, 2, 4 and its own parity block. Since the 
regenerated video block 3 is sent to the corresponding 
client via the external network path, the streaming media 
service can be continued.  

However, the performance of RS-BRM suffers from the 
bottleneck of input network on the recovery node because 
all video blocks stored in the survived nodes should be 
transmitted into a recovery node at the same time.  

4. Pipeline Computing to Recover Failed 
Video Blocks 

4.1 Architecture 

To address the internal network bottleneck of the RS-
BRM, we propose a new recovery system based on the 
concept of pipeline computing. It is denoted as RS-
PCM(Recovery System based on Pipeline Computing 
Mechanism). The proposed method distributes the 
network traffics needed in the process of recovery into all 
survived MMS nodes and fully utilizes the available CPU 
time of MMS nodes. 

In the parity based RAID algorithms, the exclusive-OR 
operations for video blocks take a great part of computing 
loads. To rebuild the video blocks stored in the failure 
MMS node, several exclusive-OR stages are necessary 
sequentially. For each stage, the two blocks are needed to 
execute the exclusive-OR operation at a time. However, 
the final result is independent of the order in which pairs 
are processed. Therefore, even if the exclusive operations 
for all video block pairs are executed in out of order in 
sequence, the same results are achieved. Based on this 
characteristic, we distribute the exclusive-OR stages into 
MMS nodes. It can solve the network congestion problem 
on the input network port of recovery node. In addition, 

the available CPU time of MMS nodes can be utilized by 
distributing the exclusive-OR operation into each MMS 
node. 

Figure 4 shows the architecture of RS-PCM and the 
flow of video blocks in the VODCA server. As shown in 
this figure, the RS-PCM not only distributes the network 
traffics for recovery processes but also spreads the 
exclusive-OR operations over all survived MMS nodes. 
In RS-PCM, when a MMS node fails, all survived MMS 
nodes do not send their video blocks to the recovery node 
directly. On the other hand, each MMS node transmits the 
original video block or it own exclusive-OR result block 
to their neighbor MMS node. A MMS node performs its 
own fraction of exclusive-OR operation with both a video 
block retrieved from its local disk and the other block 
received from its neighbor MMS node.  

In RS-PCM, the blocks received from its neighbor 
MMS node may be an original video block stored in the 
disk or the result of exclusive-OR operation executed by 
the neighbor MMS node. The results are sent to the 
neighbor MMS node successively such as the pipeline 
process in the instruction level [15].  

 

Client

2
1

4
3

MMS 1 MMS 4MMS 3MMS 2 Recovery
Node

1

HUB

HUB

1 2 4

P

2 P

3

34

VODCA

P11 2 3 4

Video Block Parity Block

Parity Operation
( Exclusive OR )

Node Failure
Internal Network Path

External Network Path

external network

internal network

Client

2
1

4
3

MMS 1 MMS 4MMS 3MMS 2 Recovery
Node

1

HUB

HUB

1 2 4

P

2 P

3

34

VODCA

P11 2 3 4

Video Block Parity Block

P11 2 3 4 P11 2 3 4

Video Block Parity Block

Parity Operation
( Exclusive OR )
Parity Operation
( Exclusive OR )

Node FailureNode Failure
Internal Network Path

External Network Path

external network

internal network

 
Figure 4: Architecture of  RS-PCM 

Finally, the recovery node performs the last exclusive-
OR operation with its parity block and the aggregate 
result of all MMS nodes. As a result, the video block 
stored in the failed MMS node is rebuilt. After that, the 
regenerated video block is transmitted to clients through 
the external network path. For example, as shown in the 
Figure 4, when the MMS node 3 fails, the MMS 1 node 
sends the video block 1 to the MMS 2 node. The MMS 2 
node performs the exclusive-OR operations with both the 
video block 1 and the block 2. After that, the result is sent 
to the MMS 4 node to perform the exclusive-OR 
operation with the video block 4. Finally, after the 
exclusive-OR operations for all survived video blocks are 
finished, the result is sent to the recovery node. The 



recovery node regenerates the video block 3 throughout 
the exclusive-OR operation with the parity block. 

4.2 Characteristics of the RS-PCM 

The Figure 5 shows the recovery operations according 
to the pipeline concept of the RS-PCM. As shown in this 
Figure, the issuing of at least one retrieving or 
transmitting or executing exclusive-OR operation every 
cycle is like to the pipeline technique in the parallel 
processing of instructions [15]. This parallel processing 
for recovering the failed blocks induces a better 
performance. As shown in this Figure, the failed MMS 3 
node has video block 3, 7, 11, 15, 19, 23. These blocks 
are regenerated in the recovery node every cycle 
according to the pipeline computing. 

The recovery node in RS-PCM executes exclusive-OR 
operation just one time for each cycle and sends the result 
to the client. The RS-PCM distributes not only the 
computation load for exclusive-OR operations but also 
the network traffics into all MMS nodes. The input 
network traffic of recovery node is equal to the output 
traffic of one MMS node. Each MMS node has the same 
amount of network traffics as its output. The recovery 
node and MMS nodes could utilize the full capacity of 
the internal network path. If the n-1 MMS nodes are 
survived and output traffic is m, only the m network 
traffics exist on the input interface of the recovery node. 
Due to this characteristic, the recovery node does not 
suffer from the bottleneck phenomenon in the input 
network port. 

 

4

3

P

7

1 2

1

8

P

5 6

5

12

P

9 10

9

11

16

13 14

13

20

17 18

17

24

21 22

21

P P P

15 19 23

MMS 2

MMS 4

MMS 3

MMS 1

Recovery
Node

Time(Cycles)

1

2

4

3

Video block

P

Parity block

Parity Operation
( Exclusive OR )

Node Failure

2 cycle 3 cycle 4 cycle 5 cycle 6 cycle1 cycle

4

3

P

7

1 2

1

8

P

5 6

5

12

P

9 10

9

11

16

13 14

13

20

17 18

17

24

21 22

21

P P P

15 19 23

MMS 2

MMS 4

MMS 3

MMS 1

Recovery
Node

Time(Cycles)

1

2

4

3

Video block

P

Parity block

Parity Operation
( Exclusive OR )

Node Failure

2 cycle 3 cycle 4 cycle 5 cycle 6 cycle1 cycle

 
Figure 5:  Recovery steps on pipeline concept 

5. Experimental Environment 

5.1 System Configuration 

The VODCA server for our experiments consists of a 
HS node, 4 MMS nodes and a recovery node. Each node 
operates on the Linux operating system. The MMS nodes, 
HS node and clients are connected via a 100 Mbps 
Ethernet switch. All MMS nodes and the recovery node 
are also connected via the internal network path 
constructed by a 100 Mbps Ethernet switch.  

All applications included the system administrative 
tools of the HS node are developed on Qt, C and C++ 
libraries. Table 1 shows the hardware components for 
each MMS node in the VODCA system. Table 2 shows 
the detail specification of movies used in our experiments. 
They are MPEG-2 movies and have enough running time 
to evaluate their performance in our system.  

Table 1:  Specification of MMS nodes and a recover node 
CPU Intel Pentium 4, 3.0 GHz 
Memory 1GByte DDR 

Disk Segate Baracuda ATA IV 40GB 
7200RPM ⅹ 2 

OS RedHat 7.3 (Kernel 2.4.18) 

Network 100 Mbps Fast Ethernet, 100Mbps 
Ethernet Switch with 24 ports 

Table 2: Specification for experimental movies 
Movie name John Q Ice Age 

Frame size(H ⅹ V) 352 ⅹ 288 352 ⅹ 288
Frame rates(number/sec) 25 25 
Bit rates(bps) 1,437.6 1,437.6 
Running time(Minutes) 110 85 
GOP size(Kbytes) 124.1 120.8 

 

5.2 Load Generator and Performance Metrics 

We use the yardstick program to measure the 
performance of our cluster-based VOD server [16]. The 
yardstick program consists of the virtual load generator 
and the virtual client daemon. The virtual load generator 
is located in the HS node and generates client requests 
based on the Poisson distribution with λ= 0.25[17]. These 
requests are sent to each MMS nodes. After that, all 
MMS nodes concurrently begin streaming media services 
for satisfying the clients’ demand.  

The virtual client daemon locates in test-bed PCs for 
clients. It plays the role of receiving movie data from 
MMS nodes. Based on MPEG-1, 2 specifications, we 
assume that a QoS stream requires 1.5 Mbps network 
bandwidth. To support this QoS criterion, the virtual 



client daemon measures the time elapsed for receiving 
1.5Mbits of data. If the elapsed time is below 1 second, 
the virtual client daemon remains in an idle state until 1 
second period had passed. After exhausting this 
remaining time, the daemon wakes up again and begins to 
receive the next media data. This waiting process makes 
the virtual client daemon act as a real client.  

6. Performance Evaluation 

6.1 Network Traffics 

0

2

4

6

8

10

12

14

16

1 51 101 151 201

Time(sec)

N
e
tw

o
rk

 T
ra

ff
ic

s(
M

B
/s

e
c
) 
  

 2

Output traffics to clients from a MMS node
Output traffics to a recovery node from a MMS node
Output traffics to clients from a recovery node
Input traffics to a recovery node

 

Figure 6:  Network traffics in RS-BRM 

0

2

4

6

8

10

12

14

1 51 101 151 201
Time(sec)

N
e

tw
o

rk
 B

a
n

d
w

id
th

(M
B

/s
e

c
) 

  
.

output to clients from a MMS node

output to its neighbor MMS from a MMS node

Input from a neighbor MMS to a MMS node

output to clients from a recovery node

input from a last MMS to a recovery node

 
Figure 7:  Network traffics in RS-PCM 

 
The Figure 6 shows the network traffics in a MMS node 

and the recovery node when the 12MB/sec traffics are 
loaded. The output network traffic of 12MB/sec 
represents that 4 MMS nodes provide 256 streams(12M * 
8 bit * 4 MMS nodes / 1.5 Mbps). The failure of a MMS 
node takes place at the 120 second of the time line. As 
shown in this Figure, after a failure occurs, the network 
traffics from a MMS node to clients are decreased to 

4MB/sec rates from 12 MB/sec rates. However, as 
marked by the x legend, the amount of input traffics of 
the recovery node reaches about 12 MB/sec. 

The reason is that when the recovery node can not 
receive any more video blocks due to its input network 
bottleneck. Under the 12 MB/sec traffics per a MMS 
node, after a MMS node fails, the network traffics from 
remained 3 MMS nodes to the recovery node are reaching 
to 36MB/sec. However, as mention in the Table 1, the 
input network capacity of recovery node is limited to 
12.5MB/sec(100Mbps). Thus, the input port of a recovery 
node suffers from the bottleneck phenomenon due to the 
overwhelmed video data. The clogged video blocks on 
the input network port of recovery node can not be used 
in the process for rebuilding the failed video blocks. 
Therefore, to balance with the processing speed of the 
recovery node,  the MMS nodes also automatically 
decrease the amount of output traffics to their clients. As 
a result, 12 MB/sec traffics from a MMS node converge 
into 4 MB/sec traffics. The 4MB/sec traffics mean that 
only 85 clients can be supported(4M *8 bit * 4 MMS 
nodes / 1.5 Mbps). 

The Figure 7 shows the network traffics in a MMS node 
and the recovery node when the 12MB/sec traffics are 
loaded. The failure of a MMS node takes place at the 120 
second of the time line. As shown in this Figure, even if a 
failure occurs, the network traffics from a MMS node to 
clients are continuously sustained as 12 MB/sec rates. 
The 12MB/sec traffics mean that only 256 clients can be 
supported in the failed state(12M *8 bit * 4 MMS nodes / 
1.5 Mbps). In the partial failed state, when compared to 
the RS-BRM, the RS-PCM provides 3 times unceasing 
streams in the same working environment.  

The square legend mark in the Figure 7 represents the 
amount of output traffics toward the neighbor MMS node. 
In the RS-PCM, if the current MMS node is not the last 
MMS node, it transmits its own video blocks or the result 
blocks executed the exclusive-OR operation to its 
neighbor MMS. From the circle legend mark, we find that 
the amount of input traffics from the neighbor MMS node 
is almost equal to that of its own output traffics. The 
amount of input traffics from the last MMS node reaches 
to the 12MB/sec rates so that the recovery node also can 
rebuild the video blocks as much as 12 MB/sec rates. 
After that, the recovery node transmits the recovered 
video blocks to clients. From the triangle legend mark of 
the Figure 7, we can confirm that the output traffics of 
rebuilt blocks in the recovery node also get to the 
12MB/sec rates.  

As a result, since the RS-PCM distributes the network 
traffics among all MMS nodes and utilizes the available 
CPU resources of MMS nodes, it provides the more 
number of unceasing QoS streams in a partially failed 
cluster-based VOD server.  



7. Conclusion 

To study the recovery system in the actual VOD service, 
we implement a cluster-based VOD servers composed of 
general PCs and the internal network path. From the 
implemented VOD server, the RS-BRM was designed 
with the advantage of RAID-4 in disk retrieving speed 
and the advantage of RAID-3 in effective memory usage. 
However, in the RS-BRM, we found that the input 
network path of a recovery node is easily saturated with 
the video blocks transmitted from the survived MMS 
nodes. The delay of video blocks transmitted to the 
recovery node caused the reduction of the number of 
clients and the aggravation of the quality of video streams. 
In addition, the RS-BRM showed the inefficiency CPU 
usage of MMS nodes. In this method, Since the MMS 
nodes simply performed the retrieving and transmitting of 
their own video blocks, the average CPU utilization was 
measured below 10%.  

To address these issues, we proposed the RS-PCM 
based on the pipeline computing over MMS nodes and a 
recovery node. In the RS-PCM, the recovery node rebuilt 
the video blocks stored in the failed MMS node and sends 
them to clients just one time for each cycle. This 
mechanism is similar to the pipeline process of 
instructions. The RS-PCM made efficient use of the 
available CPU resource of MMS nodes so that all 
survived MMS nodes were participated in the recovery 
procedures to rebuild the impaired video blocks. Based 
on this pipeline computing, the RS-PCM distributed not 
only the computation load for exclusive-OR operation but 
also the network traffics across all MMS nodes.  From 
our experiment, we observed that the input network 
traffics of a recovery node were the same amount of 
output traffics induced by the last MMS node. Even in the 
failure state of a MMS node, the RS-PCM showed the 
improved performance by providing at least 3 times QoS 
streams when compared to the RS-BRM.  
 
References 
[1] Dinkar Sitaram, Asit Dan, “Multimedia Servers: 

Applications, Environments, and Design,” Morgan 
Kaufmann Publishers, 2000. 

[2] http://www.mpeg.org 
[3] Armando Fox, David Patterson, “Approaches to Recovery 

Oriented Computing,” IEEE Internet Computing, Vol. 9, 
no. 2, pp.14-16, 2005. 

[4] Dong Tang, Ji Zhu, Roy Andrada, “Automatic Generation 
of Availability Models in RAScard,” IEEE International 
Conference of Dependable Systems and Networks, June 
23-26, pp. 488~494, 2002. 

[5] http://www.ieeetfcc.org 
[6] Nabil J. Sarhan, Chita R. Das, “Caching and Scheduling in 

NAD-Based Multimedia Servers,” IEEE Transactions on 

PARALLEL AND DISTRIBUTED SYSTEMS, Vol.15, 
No.10, pp.921~933, 2004. 

[7] Sooyong Kang, Heon Y. Yeom, “Modeling the Caching 
Effect in Continuous Media Servers,” Multimedia Tools 
and Applications, 23(3), pp 203-224, 2003. 

[8] Prashant J. Shenoy, Pawan Goyal, Harrick M. Vin, “Data 
Storage and Retrieval for Video-on-Demand Servers,” 
IEEE Fourth International Symposium on Multimedia 
Software Engineering (MSE'02),pp.240-245, December 
2002. 

[9] Jamel Gafsi, Ernst W. Biersack,“Modeling and 
Performance Comparison of Reliability Strategies for 
Distributed Video Servers,”IEEE Transactions on Parallel 
and Distributed Systems, Vol. 11, No. 4, pp.412~430, 2000.  

[10] J. Gafsi and E.W. Biersack, “Data Striping and Reliablity 
Aspects in Distributed Video Servers,” In Cluster 
Computing: Networks, Software Tools, and Applications, 2 
(1): pp. 75~91, February 1999. 

[11] W.J. Bolosky, R.P. Pitzgerald, J.H. Draves,“Distributed 
schedule management in the Tiger video 
fileserver,”Proceedings of the sixteenth ACM symposium 
on Operating systems principles, Saint Malo France, 
October 05-08. pp. 212~223, 1997. 

[12] T. Chang, S. Shim, and D. Du, ”The Designs of RAID with 
XOR Engines on Disks for Mass Storage Systems,”IEEE 
Mass Storage Conference, March 23-26, pp. 181~186, 
1998. 

 
[13] A. Merchant and P.S. Yu, “Analytic modeling and 

comparisons of striping strategies for replicated disk 
arrays,”IEEE Transactions on Computers, vol.44, Mar., 
pp.419~433, 1995.  

[14] M. Holland, G.Gibson, and D. Siewiorek, “Architectures 
and algorithms for on-line failure recovery in redundant 
disk arrays,”Journal of Distributed and Parallel Databases, 
vol.2, pp. 295~335, 1994.  

[15] David A. Patterson and John L. Hennessy, “Computer 
Organization & Design,”PP. 392~490, Morgan Kaufmann, 
1998. 

[16] Brian K. Schmidt, Monica S. Lam, J. Duane Northcutt, 
“The interactive performance of SLIM: a stateless, thin-
client architecture,” ACM SOSP'99, pp. 31~47, 1999. 

[17] Jung-Min Choi, Seung-Won Lee, Ki-Dong Chung, “A 
Muticast Delivery Scheme for VCR Operations in a Large 
VOD System,”8th IEEE International Conference on 
Parallel and Distributed Systems, June 26-29, pp. 555~561, 
2001. 

[18] Dongmahn Seo, Joahyoung Lee, Inbum Jung, “Resource 
Consumption-Aware QoS in Cluster-based VOD Servers,” 
Journal of Systems Architecture, Volume 53 , Issue 1, pp. 
39-52, 2007 

 


