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Abstract

The performance of parallel programs has suffered from mem-
ory access latencies induced by cache misses. In this paper,
to investigate the causes of these cache misses, data parallel
applications were executed on shared memory multiproces-
sors. The experiment showed that cache conflict misses oc-
cupied most of the cache misses. This was due to the cross
interference among the grains composed of the part of data
arrays. To address this problem, a tailored grain size was
devised from the underlying cache architecture. Besides the
interference among grains, cache performance was sensitive
to the way data were constructed. To make data structure
for exhibiting good cache behavior, a stride merging-arrays
method was presented. This method entailed the reduction
of cache conflict misses and reduced the useless prefetches
in cache lines with multiple words. Simulation results show
that these techniques may enhance the performance of par-
allel applications due to the improved cache performance.
Keywords: Parallel Application, Cache Misses, Grain Size,
Prefetch, Merging

1 Introduction

Cache memory is very effective at increasing program per-
formance since the locality is exploited enough by holding
regions of recently referenced memory. However, cache misses
result in memory access latencies in retrieving correspond-
ing data from the main memory. During this penalty period,
processors must stall until the data arrive. Though fast pro-
cessors are used, since high cache miss-rates aggravate pro-
cessors’ utilization, applications that ignore caching effects
may severely degrade performance.

The workload of parallel programs is partitioned into many
grains based on granularity policies. The grains are dis-
tributed to processors working in parallel processing. How-
ever, the grain size that does not consider underlying cache
memory may degrade cache performance since the interfer-
ence among grains composed of data arrays may increase
cache conflict misses. In this paper, data parallel programs

are executed on shared memory multiprocessors, and the
weight of the cache conflict misses is measured. And to
reduce cache conflict misses due to the interference among
grains, a tailored grain size is suggested, based on the num-
ber of processors and the cache size of a processor.

Besides the interference among grains, the cache misses
are sensitive to the way data are constructed. The merging-
arrays technique has been exploited for reducing cache con-
flict misses. However, this existing technique results in the
useless data prefetches when applications have simultane-
ously referenced multiple arrays in the same dimension us-
ing the different indices. To address this problem, a stride
merging-arrays method is devised, based on the grain size in
parallel applications.

Our simulation results show that the tailored grain size
may reduce the cache conflict misses through the decrease
of the interference among grains. Also the stride merging-
arrays method increases cache performance due to not only
the reduced cache conflict misses but also the useful data
prefetches. These two techniques improve the performance
of simulated parallel applications.

This paper is structured as follows: in Section 2 related
work is presented. In Section 3 the simulation environment
is presented. In Section 4 benchmark applications are de-
scribed and their performances are measured. In Section 5
a tailored grain size is suggested and evaluated through the
simulation. In Section 6 a stride merging-arrays is suggested
and evaluated through the simulation. Finally, the conclu-
sion is presented in Section 7.

2 Related Works

Much research has investigated cache effects and bus traf-
fic patterns under various parallel programs [1, 2, 3]. These
studies reported that the data sharing characteristics affected
the performance of cache coherency protocol, and also that
the performance of coherent caches relied on the quantity of
sharing data and its locality in the program. Eggers [4] re-
searched the effects of cache line size on cache and bus per-
formance using traces of application programs. This study
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described both processor locality and false sharing as impor-
tant factors in the system performance when increasing the
cache line size. Torrellas [5] reported that the cache miss
rate decreased when the application was constructed based
on processor’s cache characteristics, allocating locking vari-
ables to separate cache lines, and grouping data according to
shared patterns.

Cache performance depends on the locality of references.
If the sequence of addresses referenced by applications can-
not all be stored in the cache, cache misses occur. It is not
possible to build a cache that is large enough to hold the
working sets of all possible applications, nor is it possible
to code all applications to avoid all cache misses. How-
ever, several optimization techniques based on small source-
code changes were used for improving cache performance
[6, 7, 8]. Lam [6] experimented with a matrix multiplica-
tion using the blocked algorithm under various cache struc-
tures. This study calculated the optimal block size based
on given cache parameters that could avoid self-address in-
terference. But this research did not deal with cross ad-
dress interference among grains. Lebeck [7] suggested a
visualized tool called CPROF (Cache Profiling) that classi-
fied cache misses as compulsory, capacity, and conflict, and
then provided cache performance information at the source
line and data structure level. This tool improved perfor-
mance by helping a programmer determine appropriate pro-
gram transformations like merging-arrays, padding, aligning
structures, and so forth.

In the previous studies, the impact of the grain size on
parallel applications was not examined. Even if the sum of
cache memories increases as more processors are employed,
the anticipated cache performance is not achieved, since the
cache performance is hurt by the interference among the
grains and the mis-constructed data arrays.

3 Simulation Methodology

3.1 Simulated Multiprocessor

The simulation environment consists of a functional sim-
ulator that executes parallel applications and an architec-
tural simulator that models the shared memory multipro-
cessor. An efficient program-driven simulator, MINT(Mips
INTerpreter)[9] is used as a functional simulator. We con-
struct an architectural simulator based on a multiprocessor
with a bus-based structure. Each processor is assumed to
be a RISC processor with the same cache size and each in-
struction is executed in a single cycle except the memory
reference.

3.2 Cache Parameters and Timing Considerations

We assume that cache structure is 128 Kbytes direct-mapped
with 16 bytes cache line size. A cache line is composed of
4 words. The simulated cache coherency protocol is write
invalidation scheme[10]. On current microprocessors, the

main memory access-time is about 80 ns, the clock rate is
250 Mhz(e.g. MIPS R10000, UltraSparc-II) and the system
bus width is 128 bits. Table 1 shows timing values used
in the cache coherency protocol based on these parameters
including 1 address cycle and 1 bus operation cycle.

Table 1: Timing Parameters for Cache Coherency Protocol

Events Penalties
(operations) (cycles)

A write on a shared line 3
(invalidate signal)
A cache miss 7
(The missed line is supplied by an another cache)
A cache miss 22
(The missed line is supplied by the main memory)

4 Benchmark Applications and Their Performance

4.1 Benchmark Applications

The four data parallel applications that we have chosen are
BMM(Blocked Matrix Multiplication), LU(LU Decompo-
sition), FFT(Fast Fourier Transform) and BS(Bitonic Sort-
ing) [11]. All of these applications are written in C and use
the synchronization and sharing primitives provided by the
SGI’s parallel macros package. All programs are run with 8
processes on 8 processors. In our benchmark applications,
a grain size is defined as the part of data arrays. We use the
coarsest grain size that is achieved by dividing the workload
of a program by the number of processors, since it incurs the
least address interferences between grains occupying a pro-
cessor. Table 2 shows the workloads of these benchmark
programs. The partitioned grains are then executed by a
static scheduling policy [12, 13]. The static scheduling pol-
icy designates grains for each process before a program is
executed. Since the grains allocated to all processes are not
changed until the program finishes, the data locality can be
exploited.

Table 2: Benchmark Applications

Applications Data items Data size
LU a ��� � ��� matrix 512 Kbytes
BMM three ��� � ��� matrices 1.5 Mbytes
FFT two arrays with 65,536 elements 1 Mbytes
BS two arrays with 32,768 elements 512 Kbytes

4.2 Performance

Table 3 provides some statistics about the applications when
each application is run individually with the simulation en-
vironments described above. As can be seen, all applica-
tions show that the cache miss times are given much weight
in total execution time. The cache miss time indicates the
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processor stall time due to cache misses. In particular, this
experiment also illustrates that cache conflict misses occupy
most of the cache misses in all applications.

Table 3: Statistics for Application Performance

Applications Execution Cache miss Rate of cache
time time conflict misses

�����cycles� �����cycles� (%)
LU 48.7 20.1 58.1 %

BMM 83.1 20 94.9 %
FFT 171.4 130.2 98 %
BS 383.2 369.5 99 %

5 A Tailored Grain Size

5.1 Principle

To reduce the cache conflict misses induced by the cross in-
terference both among grains, we suggest a tailored grain
size on the basis of the number of processors and the cache
size of a processor. This method is effective when the sum
of cache memories exceeds the data size of a program, and
it also assumes a cache indexed with virtual addresses and
the same cache size for every processor. Figure 1 shows
an example of the address alignments when a tailored grain
size is applied at 4 processors. As shown in this figure, the
grains occupying the same processor have distributed ad-
dress spaces as much as the sum of a cache size and a tai-
lored grain size. Thus, the cross interference among grains
does not incur, so cache conflict misses are decreased.

P1

P2

P3

P4

P1

P2

P3

P4

Data array A cache memory layout
of processor P1

C

Pi :  Areas partitioned into the processor i.
G :  A tailored grain size
C :  A processor's cache size
U :  The finest grain size of an application
α :  Constant

 : Areas for processor P1

 : Areas for processor P2

 : Areas for processor P3

 : Areas for processor P4

  : Mapping to a cache

A chunk size

C

G = α × U

G

G

G

G

G

G

G

A cache memory layout
of processor P2

C

G

G

Figure 1: Address alignments using a tailored grain size.

A tailored grain size is composed of a multiple of the
finest grain size of an application. A chunk size is defined

by multiplying a tailored grain size by the number of proces-
sors. To apply this tailored grain size at several data arrays,
the address space of each array must be a multiple of the
chunk size. Thus, when doing the memory allocation, the
array structure should be aligned. The following equations
are driven from the Figure 1.

G � �� U� G�N � C �G

G : a tailored grain size

N : number of processors

C : a processor’s cache size

U : a finest grain size

� : constant

From these equations, a tailored grain size is computed by

�� U � d
C

�N � ��
e

5.2 Performance

For our experiments, the tailored grain sizes were calculated
for the LU and BMM programs since they had shown fixed
memory reference patterns during their execution. To eval-
uate the performance of the tailored grain size, besides the
performance of it, programs were run under a direct-mapped
cache using the coarsest grain size and set associative caches
using the coarsest grain size. Set associative caches can also
decrease cache conflict misses, but they may suffer from the
cost of increased hit times. Hill [14] found about a 10%
difference in hit times for a direct-mapped cache versus a 2-
way set associative cache and a 12% difference for a 4-way
set associative cache. In these experiments, the cost of hit
times for set associative caches was not reflected.

The LU program is run on 8 processors with 128 Kbytes
direct-mapped cache and executes the decomposition for a
��� � ��� matrix. When the finest grain size is 1 row(2
Kbytes in size), the tailored grain size is then approximately
10 rows from above equation. Figure 2(a) shows that the tai-
lored grain size presented the better performance than other
cases. TGS denotes a tailored grain size and CGS denotes the
coarsest grain size. The tailored grain size showed the better
performance of about 41.8% than the coarsest grain size un-
der the direct-mapped cache and about 24.1% than the 2-way
set associative cache and about 23.5% than the 4-way set as-
sociative cache. This result was due to the reduced cache
misses with the tailored grain size as shown in Figure 2(b).
The tailored grain size induced the reduced cache misses of
about 41.7% than the coarsest grain size under the direct-
mapped cache and about 33.8% than the 2-way set associa-
tive cache and about 32.4% than the 4-way set associative
cache.

The BMM program uses three matrices of ��� � ��� el-
ements. It is executed on 12 processors with a 128 Kbytes
direct-mapped cache, since a tailored grain size is more use-
ful when the sum of cache memories exceeds the data size of
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a program. When the finest grain size assumes a row com-
posed of � � � blocks(2 Kbytes in size), the tailored grain
size is approximately a � � � block. Figure 3(a) shows that
the tailored grain size produced the better performance than
other cases. The tailored grain size showed the better per-
formance of about 33.4% than the coarsest grain size under
the direct-mapped cache and about 7.3% than the 2-way set
associative cache and about 6.7% than the 4-way set associa-
tive cache. As shown in Figure 3(b), the tailored grain size
entailed the reduced cache misses of about 40.1% than the
coarsest grain size under the direct-mapped cache and about
15.4% than the 2-way set associative cache and about 13.8%
than the 4-way set associative cache.
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Figure 2: Comparison of performance in LU program

6 A Stride Merging-Arrays Method

6.1 Principle

The merging-arrays technique has been exploited for reduc-
ing cache conflict misses. Figure 4 also shows examples for
the non-merging arrays, the existing merging-arrays, and the
stride merging-arrays methods in C programming language.

The existing merging-arrays technique has been discussed
throughly in previous work[7, 8]. However, the existing
technique is applicable only when programs have simulta-
neously referenced multiple arrays in the same dimension
using the same indices. If the different indices are simulta-
neously used in applications, the useless prefetches can be
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Figure 3: Comparison of performance in BMM program

induced in cache lines during the execution of grains. The
reason is that the grain size of parallel applications is not
considered when merging the arrays. In data parallel ap-
plications, the grains mean the part of data arrays and oc-
cupy the contiguous address space and request the elements
of other arrays in the sequential address space as much as a
grain size.

Figure 5 shows data placement on the cache memory
with 4 words within a cache line, when the existing merging-
arrays method is applied on the FFT. Since the FFT simulta-
neously accesses two arrays with different indices, if a pro-
cessor executes a grain composed of memory references like
Y 	
� = X 	
� + X 	��, Y 	�� = X 	�� + X 	��, Y 	�� = X 	�� +
X 	��, and Y 	� =X 	� +X 	��, data from Y 	�� to Y 	�� loaded

/* non-merging arrays */

int  X[SIZE];

int  Y[SIZE];

/*  existing merging-arrays  */                /*   stride merging-arrays   */

struct  merge  {                            struct  merge  {

         int  X:                                    int  X[GRAIN_SIZE];

         int  Y;                                    int  Y[GRAIN_SIZE];

};                                         };

struct merge data[SIZE];                       struct merge data[SIZE / GRAIN_SIZE];

Figure 4: Examples of merging arrays in C
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into cache memory are unused data for computation. Thus,
useless prefetches are induced.

Useless
prefetching

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

Y[0]

Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

:  Address sequence of
      a merging array

:  Data access patterns
    in FFT program

Array X[]      Array
Y[]

Cache memory

X[4] Y[4] X[5] Y[5]

X[6] Y[6] X[7] Y[7]

Cache blocks

X[0] Y[0] X[1] Y[1]

  : useful data

  : useless data

Figure 5: Address alignments using the existing merging-
arrays

To address this problem, we devise a stride merging-arrays
method based on the grain size in parallel applications. A
grain size is regarded as a stride for merging the arrays. The
stride merging-arrays method merges multiple arrays into a
single array by exploiting a grain size as the merged unit.
In this method, although the different indices are used, the
useless prefetches do not occur in cache lines with multiple
words since the accessed elements are exploited during the
execution of grains.

Figure 6 shows data placement of the FFT program on
the cache memory when the stride merging-arrays method
is used. In this Figure, when a processor computes Y 	
�,
Y 	��, Y 	��, and Y 	� as in the Figure 6, X 	��, X 	��, X 	��,
and X 	�� are sequentially loaded into a cache line instead
of Y 	��,Y 	��,Y 	��, and Y 	�� loaded in the existing merging-
arrays method. Since these loaded data are used during the
execution of a grain, they are useful prefetches. Thus, us-
ing the stride merging-arrays method, besides the reduction
of cache conflict misses, the useful prefetches substantially
improve cache performance.

6.2 Performance

To evaluate the stride merging-array method, we executed
the FFT and BS programs on the environment described in
Section 3. Table 4 shows the performances of applications
achieved by the stride merging-arrays and the existing merging-
arrays. In the FFT, the stride merging-arrays method repre-
sents an improved performance of about 12.2% with reduced
cache misses of about 28.8% as compared with the exist-
ing merging-arrays method. In the BS, the stride merging-
arrays method also shows an improved performance of about
12.3% with reduced cache misses of about 22.1%, as com-
pared with the existing merging-arrays method.

Cache blocks

: Address sequence of
      a merging array

: Data access patterns
    in FFT program
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Y[1]

Y[2]

Y[3]

Y[4]

Y[5]

Y[6]

Y[7]

Array X[]    Array Y[]

Cache memory

Y[0] Y[1] Y[2] Y[3]

X[0] X[1] X[2] X[3]

  : useful data

  : useless data

X[4] X[5] X[6] X[7]

Figure 6: Address alignments using the stride merging-
arrays

Table 4: Performance of two merging-arrays methods

Applications Existing Merging Stride Merging
Execution Cache Execution Cache

Time Misses Time Misses
FFT 65.3 6.3 57.2 4.5
BS 25.4 1.8 22.1 1.4

(Execution Time : ���� cycles , Cache Misses : ���� numbers)

7 Conclusion

In this paper, we studied the cache behavior that arises when
parallel applications had been run on shared memory multi-
processors. We applied the coarsest grain size to our bench-
mark applications and then executed the grains on a static
scheduling policy to exploit the cache locality. In our bench-
mark applications, the wasted time due to the cache misses
occupied most of the elapse time, even if the sum of proces-
sor caches approached or exceeded the size of the program
data. In particular, a great portion of the cache miss resulted
from the cache conflict misses due to the cross interference
among the grains occupying the same processor.

To address this problem, a tailored grain size was de-
vised based on the underlying cache architecture. This tech-
nique decreased the cache conflict misses due to the reduc-
tion of the interference among the grains. When applying
the tailored grain size to the LU and the BMM programs,
it decreased about 41.7% of the cache misses in LU pro-
gram and 40.1% of those in BMM Program as compared
with those achieved by the coarsest grain size. These re-
duced cache misses resulted in a performance improvement
of about 33.3% for the LU program and about 33.5% for the
BMM program. In particular, comparing with set associative
caches, the tailored grain size using the direct-mapped cache
resulted in a better performance than that of the set associa-
tive caches, due to its lower cache miss rates. This was due
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to the fact that the tailored grain size was more effective in
reducing cache conflict misses than set associative caches.

To reduce the cache misses, a merging-arrays technique
had been used. However, the existing technique produced
the useless prefetches in cache lines since the grain size of
parallel applications was not considered when merging the
arrays. To address this problem, we suggested a stride merging-
arrays technique that improved the prefetching effects by
considering the stride of the indices on the merged arrays.
The stride merging-arrays method increased the cache uti-
lization, due to not only the reduction of cache conflict misses,
but also to the useful data prefetches. The stride merging-
arrays was applied to both the FFT program and the BS
program. In the FFT program, the cache misses were de-
creased about 28.8% as compared with the existing merging-
arrays, and therefore these caching effects resulted in the im-
proved performance of about 12.2%. In the BS program,
the stride merging-arrays method also produced the reduced
cache miss of about 22.1%, and the improved performance
of about 12.3%.
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