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SUMMARY Recently, layer-4 (L4) switches have been
widely used as load balancing front-end routers for Web server
clusters. The typical L4 switch attempts to balance load among
the servers by estimating load using the load metrics measured
in the front-end and/or the servers. However, insufficient load
metrics, measurement overhead, and feedback delay often cause
misestimate of server load. This may incur significant dynamic
load imbalance among the servers particularly when the varia-
tion of requested content is high. In this paper, we propose a
new content sniffer based load distribution strategy. By sniffing
the requests being forwarded to the servers and by extracting load
metrics from them, the L4 switch with our strategy more timely
and accurately estimates server load without the help of back-end
servers. Thus it can properly react to dynamic load imbalance
among the servers under various workloads. Our experimental
results demonstrate substantial performance improvements over
other load balancing strategies used in the typical L4 switch.
key words: clusters, load balancing, World Wide Web, perfor-
mance evaluation

1. Introduction

The rapid growth of World Wide Web has introduced a
few significant changes to server systems. Even theWeb
sites with large server capacity have been often over-
whelmed by continuous and disproportionate increase
in client requests. Growing demand on scalability has
led many sites to deploy cluster-based servers that are
cost effective and scalable compared to a single huge
server [1], [10], [15]. The vast majority of traffic in the
early days of Web servers was for delivering relatively
small static files. Today, however, its significant frac-
tion is for graphics and multimedia content of various
sizes. As the Web is increasingly used as an interface
to new applications such as e-commerce, the proportion
of requests for dynamic content is increasing [14], [25].
Generating a dynamic page is much more resource in-
tensive than retrieving a static file because it requires
execution of additional server programs to construct
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information when a request is made. High variation
of content may cause skewed utilization of the servers.
For example, if at worst all dynamic page requests were
routed to the same server, the server would be loaded
much more than the others in the cluster.

Those changes require the cluster to employ a so-
phisticated load balancing strategy for attaining scal-
able performance. Due to architecture transparency
and centralized control of load distribution, layer-4 (L4)
switches are recently widely being deployed as load bal-
ancing front-end routers in Web server clusters [8], [9],
[12]. Since the HTTP works on top of the connection-
oriented TCP, the L4 switch attempts to balance load
among the back-end servers by means of distributing
connection requests across them. The scheduling gran-
ularity is per connection. For an incoming connection,
a server is content-blindly selected mainly on the basis
of server load. The subsequent HTTP request(s) on a
connection is routed to the same server. Thus, timely
and accurate load estimate is vital to achieve the load
balancing purpose. As it is infeasible to measure a sin-
gle metric that directly reflects each server’s load at
the switch itself, some form of load metrics feedback
from the servers is necessary. Unfortunately, the over-
head imposed on each server and the feedback delay are
not negligible. More overhead is unavoidable to obtain
more specific load metrics, and further, it is also not
easy to decide the priorities of different metrics. These
difficulties may often lead to misestimate of server load,
and cause dynamic load imbalance among the servers
particularly when content is highly varying.

As an alternative, content-aware router, called
layer-7 (L7) switch, intends to route requests to the
servers best suited to respond by first establishing a
connection with each client, and then by inspecting the
content (e.g., Uniform Resource Identifier, URI) in the
subsequent request packet [3], [18], [20]. Once a server
is chosen, the established connection and the request
have to be delivered to the server through the con-
nection migration mechanism such as TCP splicing or
TCP handoff [17], [18]. The L7 switch allows many new
capabilities such as cache affinity scheduling [18], so-
phisticated load balancing [7], session integrity [3], and
special content deployment [23] at the cost of routing
throughput. Due to the overheads of connection estab-
lishment, L7 protocol processing, and connection mi-
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gration, the front-end L7 switch may become a bottle-
neck even for the typical workload [5], [21].

In this paper, we propose a new content sniffer
based load distribution (CSLD) strategy for the L4
switch used in clustered Web servers that provide dy-
namic as well as static content. The motivation is
as follows. If the front-end could properly estimate
load of the back-end servers without load metrics feed-
back from them, more performance improvement would
be achieved because of timely load estimation and no
server overhead for load measurement. However, our
proposed strategy must not significantly reduce the
routing throughput unlike the content-aware request
distribution strategies used in the L7 switches. For this
purpose, the front-end could sniff the requests being for-
warded to the servers, and by using the extracted URIs,
it could estimate servers’ CPU and disk load that would
be caused by those requests. As a result, it could direct
new connection requests to lightly loaded servers.

Effectiveness of CSLD depends on the accuracy in
load estimate. We notice that content in a Web site can
be classified based on a knowledge of it. Static files can
be classified by the sizes because their fetching costs are
proportional to the sizes. In a similar way to that pro-
posed in [25], dynamic content can be classified using
the URI patterns such as the desired application and
query parameters. The administrator can a priori mea-
sure the average processing cost for each class of con-
tent requests on a real server. The classification results
and a priori measured costs are stored as a few tables
in the front-end. Given such tables, sniffing the URIs
enables relatively accurate estimation of each server’s
load. As a result, the L4 switch with our CSLD strat-
egy can greatly reduce dynamic load imbalance among
the servers even for workloads with bursty requests and
high variation of content, and thus improve the overall
server throughput and user perceived latency.

The rest of this paper is organized as follows. Sec-
tion 2 provides some background information and re-
lated work. Section 3 describes our CSLD strategy. In
Section 4, we present the simulation results and discuss
the performance potential of CSLD strategy. Section 5
presents conclusions and future work.

2. Background and Related Work

Figure 1 shows an example for a Web site that con-
sists of a front-end L4 switch and clustered back-end

Fig. 1 Web server cluster front-ended by a layer-4 switch.

servers. The L4 switch is implemented as a hardware
switch fabric or a software switch, which integrates the
TCP router mechanism and the dispatcher within the
kernel TCP/IP stack on a workstation or PC. Every
client packet for requesting an HTTP service from the
site reaches the front-end that has a network interface
configured with a virtual IP address (VIPA), the only
public IP address for the service [6]. The TCP router
maintains a connection table indexed by client IP ad-
dress and port number. Each table entry includes infor-
mation on a connection such as timestamp, connection
state, and target server. For an incoming packet, the
TCP router looks up the table. If an existing connec-
tion is found, it directs the packet to the target server.
Otherwise, if the packet has the TCP SYN flag set (i.e.,
connection request), it asks the dispatcher to select a
server, creates a new table entry, and then routes the
packet to the selected server. The connection table en-
try is updated according to the flag bits in the TCP
header and the timestamp of the packet.

The TCP routing mechanisms are divided into
packet rewriting mechanism and packet forwarding
mechanism. The former replaces the destination IP
address (VIPA) of an incoming packet with the tar-
get server’s IP address. The source IP address of the
response packet also has to be replaced with the VIPA,
which is done by the server or the TCP router depend-
ing on the specific packet rewriting techniques. The lat-
ter requires that the front-end and the servers are phys-
ically connected on a LAN. Once a target server is de-
cided, the TCP router reroutes the packet to the server
by changing the MAC address of the packet’s Ethernet
frame to that of the server, and then by placing it on
the LAN. The server directly sends the response to the
client. Though the latter lacks geographical scalability,
it achieve higher routing throughput than the former
which involves address translation and checksum recal-
culation in the front-end or the servers.

The load balancing strategies used in the L4 switch
(dispatcher) are as follows. Round-robin (RR) strategy
distributes connections across the servers in a round-
robin manner. Least-connection (LC) strategy directs
a new connection to the server with the least number
of active connections. It does not perform well when
the servers have different CPU power. The weighted
least-connection (WLC) strategy selects the servers so
that the number of active connections in each server
may increase in proportion to its CPU power.

The weighted round-robin (WRR) strategy selects
the least loaded server based on each server’s weight
(capacity available for serving new connections). The
weights are computed using various load metrics mea-
sured in the front-end and the servers. For instance,
IBM’s Network Dispatcher [12] uses three types of load
metrics as follows. Input metrics measured in the front-
end includes the number of active connections and the
request rate for each server. The front-end obtains for-
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ward metrics by periodic server-polling (i.e., sends a
simple HTTP “GET /” request to each server and mea-
sures the response delay). Host metrics, measured by
user level daemon processes in each server, include very
specific load metrics such as the number of active pro-
cesses, the memory usage, the number of open sockets,
and the length of wait queue for disk I/O. A user level
daemon in the front-end gathers those metrics, and
through complex aggregation procedures, computes a
load index, which determines the weight.

Authors in [7] proposed a content-aware load bal-
ancing policy called CAP for L7 switches. Though we
independently proposed our CSLD strategy, there are
some similarities between them. Both focus on load
balancing in clustered Web servers that provide dy-
namic as well as static content which have different
resource requirements. Both attempt to classify client
requests based on their expected impact on system re-
sources. However, a few fundamental differences ex-
ist between them. CAP attempts to keep the servers
evenly loaded, at the cost of system scalability. As in
other content-aware request dispatching strategies, the
L7 switch may result in the bottleneck. Per-request dis-
patching granularity is used to improve server perfor-
mance for HTTP/1.1 persistent connections, which im-
poses additional connection migration overhead. CAP
uses a coarse-grained classification of requests, such as
CPU-bound, disk-bound, both CPU- and disk-bound,
and non-resource-intensive classes, together with a sin-
gle high processing cost assumed for all dynamic con-
tent requests. It distributes the classes among the
servers so that it may avoid skewed assignment of any
particular resource-intensive class to a server. On the
other hand, CSLD is a connection dispatching strat-
egy for L4 switches. It intends to compensate content-
blindness of L4 switch with content sniffing based load
estimation and distribution while not significantly re-
ducing the routing throughput of L4 switch. Further,
CSLD allows a fine-grained content classification based
on file size, URI pattern, and a priori measured average
processing costs for each class of requests.

3. Content Sniffer Based Load Distribution

3.1 Main Idea

In this section, we propose our content sniffer based
load distribution (CSLD) strategy. For simplicity, the
following assumptions hold for the rest of this paper.
As shown in Fig. 1, the cluster consists of N homo-
geneous back-end servers and a front-end software L4
switch that integrates the dispatcher and the packet
forwarding TCP router within the kernel. All servers
are equally able to respond to any content request, and
run Apache that follows the process-driven model [16].

A client request usually passes through a sequence
of processing steps in the server. Its processing cost

includes a fixed portion and a variable one. The former
corresponds to the CPU time used in the kernel and the
user-level Apache code for the basic processing steps,
such as establishing and tearing down a connection,
parsing an HTTP header, and authorizing and logging
the request. The latter depends on the requested con-
tent, and includes the costs for fetching a file from disk
or RAM, creating a dynamic content by invoking an
appropriate handler, and transmitting the response.

The objective of CSLD is to balance load among
the servers by properly estimating load without costly
load metrics feedback from the servers. The basic idea
is as follows. The front-end dispatcher sniffs each client
request being forwarded to the target server. Using the
sniffed URI, it estimates the server’s CPU and disk I/O
time that would be consumed to process the request,
which are called CPU cost and disk cost (denoted by
ccost and dcost) respectively. They are used to com-
pute the current server load, on the basis of which new
connections are directed to lightly loaded servers. To
put the idea into practice, we need an effective way
to estimate those costs by URIs. We notice that the
administrator can possibly classify content in the site
into several classes based on a knowledge of it. Static
files can be classified by their sizes because the cost
for fetching a file is proportional to the size. Dynamic
content can be classified according to the URI patterns
such as desired application and query parameters.

As shown in Fig. 2, the dispatcher that implements
CSLD consists of content sniffer, load estimator, con-
nection dispatcher, and the following tables which are
used to classify the sniffed URIs and to estimate the
costs. The file table is a global hash table indexed by
URIs, and includes an entry for every static file in the
site. Each entry has a few fields such as file name (URI),
size, last modification time, and latest reference time in
each server. All the fields but the last one are given by
the administrator. The cost table includes CPU time
breakdowns for the basic request processing steps, ccost
for transmitting a unit size of response, and dcost for
reading a data block from disk, a priori measured by
the administrator on a real server machine.

The class table includes the average ccost, dcost,

Fig. 2 L4 switch that implements our CSLD strategy.
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Fig. 3 An example of class search in the class table.

and size for each class of dynamic content requests, a
priori measured on a real server. It consists of a string
tree proposed in [25] and parameter-cost classifiers. For
a sniffed dynamic URI, the content sniffer searches the
string tree to determine the pathname and application
name, and looks up the parameter-cost classifier to lo-
cate the matching class. Then, the average ccost, dcost,
and size of the matching class is obtained. Our sim-
ple measurements in a few small Web sites showed that
URIs with the same pathname or application name and
similar parameters often result in similar costs and page
sizes. Dynamic content requests that are similar in the
costs as well as in the URI patterns are merged into the
same class. Figure 3 shows such an example. Despite
the same pathname (/cgi-bin/sports) and application
name (soccer), uri1 and uri2 are classified into different
classes because their parameters and the correspond-
ing costs in the parameter-cost classifier are different.
On the other hand, uri3 and uri4 are classified into the
same class because their application names are differ-
ent, but their pathnames and costs are the same. When
there are a lot of merged classes, the class search over-
head may be reduced. However, the overhead for URI
classification and cost estimation will largely depend on
the service characteristics of a real Web site.

Every incoming packet is routed by the TCP router
to the target server. For a connection request, the con-
nection dispatcher selects the server with the least load
(largest weight) on the basis of the weight table, which
is periodically updated by the load estimator. It uses
the same weighted round-robin algorithm as that de-
scribed in [12], [24]. For the HTTP request arriving on
an existing connection, the target server is already spec-
ified in the connection table maintained by the TCP
router. The request is sniffed by the content sniffer,
and the corresponding server load is estimated by the
load estimator, as described in the next subsections.

3.2 Content Sniffer (CS)

Once the target server Sk (k = 0, . . . ,N− 1) is decided
for an incoming packet, the TCP router passes CS some

parameters such as the request timestamp, the target
server identifier, the pointer to the packet data, and
the round-trip-time (RTT) of the connection. Making
these parameters does not impose additional overhead
because the TCP router always maintains such infor-
mation for its own duties.

The packet is sniffed and classified as follows. CS
creates a data structure called the task that includes
the timestamp, RTT, class, ccost, and dcost fields. The
timestamp and RTT fields are set using the passed pa-
rameters. If the packet has a SYN, FIN, or RST flag set
in the TCP header, it is regarded as a connection re-
quest. In the case of request packet, the HTTP header
and URI are parsed. If the URI is a dynamic content,
it is regarded a dynamic request, and the class table is
searched to find the class that matches the URI pattern.
Otherwise, a hashing function is computed on the URI
to look up the file table. If the table has no entry for the
URI, the packet is regarded an invalid (INV) request. If
the HTTP header has an If-Modified-Since (IMS) field
with the value larger than the last modification time
in the corresponding file table entry, the packet is ex-
pected to cause a “Not-Modified” response. Other valid
URI is regarded a static file request. The ccost for a
connection, INV, or IMS request is set appropriately by
referring to the cost table. The ccost and dcost for a
dynamic request are set to those of the matching class
in the class table. For a static request, the ccost is set to
the default value for the basic request processing steps,
specified in the cost table, whereas setting the dcost is
deferred until being done by the load estimator. When
sniffing is finished, the task is placed in the queue Qk

specified for the target server.

3.3 Load Estimator (LE)

LE is invoked periodically. Suppose that the period is
P and LE is invoked at time Ti+1. The queue Qk will
contain the tasks sniffed from Ti to Ti+1, which cor-
respond to the requests routed to the server Sk during
that period. LE works in two steps as follows.

• First Step - Cost Estimation

In this step, while taking the tasks out of the queue
Qk one by one, LE estimates when and how much ccost
and dcost would be required to process the correspond-
ing request in the server Sk. The process execution for
a request is modeled as a sequence of CPU bursts and
I/O bursts. LE maintains two circular arrays to record
ccost and dcost for each server. They are called CPU
cost board, denoted by CCBk, and disk cost board,
denoted by DCBk, respectively. Figure 4 shows their
structure where max slots is the total number of slots
in an array and slot len is the maximum cost value that
can be recorded in a slot. For example, when slot len
is 50 milliseconds (ms) and max slots is 200, one array
can record up to 10 seconds of ccost or dcost, which
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Fig. 4 Structure of the cost boards (CCBk and DCBk).

corresponds to 50 periods when P is 200ms. Since the
cost boards are circular arrays, all the slots in the pe-
riod Pi are cleaned at the beginning of the first step.
LE maintains two variables TCk and TDk that indicate
the start (or finish) time of a CPU bursts and a disk
I/O bursts respectively. They are used to index the
slots in CCBk and those in DCBk respectively.

LE checks the timestamp and the class in a task
drawn from Qk. If TCk is smaller than the timestamp
in the task, it is updated. The ccost in the task is added
to the slot in CCBk indexed by TCk, and then added
to TCk as well. If the value in the slot becomes larger
than slot len, the difference is added to the subsequent
slot(s). TDk is updated to TCk value if it is smaller. In
the case of a dynamic request, (if any) dcost is added
to the slot in DCBk indexed by TDk, and then added
to TDk as well. If the class indicates a static file re-
quest, LE needs to predict whether the request results
in a cache miss in the server because its processing may
involve disk read. Various techniques may be possible
for this purpose, including our proposed one described
below. For each server, LE maintains a history table
Hk to periodically (e.g., every second) record the esti-
mated total size of data that has been read from disk
in recent hours (e.g., 6 hours). LE refers to the corre-
sponding file table entry for the latest reference time
of the URI in the server Sk, denoted by TRk(URI). If
it is zero, the request will result in a cold cache miss.
Otherwise, by referring to the history table, LE esti-
mates the total size read from disk since TRk(URI). If
the size is larger than the server cache size, the request
is expected to cause a cache miss. Then, LE computes
dcost according to the file size and the cost table, adds
it to the slot in DCBk indexed by TDk, and adds it to
TDk as well. Assuming that TDk is the time when disk
data is written into memory, LE adds the file size to the
appropriate Hk table entry. The TRk(URI) is updated
to TDk (or TCk in the case of a cache hit).

The ccost for transmitting the response is com-
puted based on the size and the cost table. If the size
is smaller than the TCP send buffer size, a whole data
will be immediately transmitted. Small static files, rela-
tively small dynamic pages, responses to INV requests,
and “Not-Modified” responses belong to such a case.
Then, the ccost is added to the slot in CCBk indexed
by TCk, and then adds it to TCk as well. Otherwise,
the transmission time depends on the TCP’s slow start,
sliding window protocol, and congestion window size

/* Statistics estimated in LE */
MR - Overall cache miss ratio in the cluster
MRk - Cache miss ratio in Sk

Cr - Average ccost per request
Cm - Average dcost per cache miss
Cp - Average ccost per period
Nr - Average number of requests per period
Fdreq - Proportion of dynamic requests
Tdreq - Average ccost of dynamic requests

/* computation of each server’s aggregate load index Lk */
if (MR < miss l) {

if (Cp < load l)
Lk = (total ccost for Pi+1 in CCBk)/Cr;

else if (Cp < load m)
Lk = (total ccost for Pi+1 and Pi+2 in CCBk)/Cr;

else
Lk = (total ccost for all the next periods in CCBk)/Cr;

if (MRk > miss m)
Lk + = (total dcost for Pi+1 and Pi+2 in DCBk)/Cm;

}
else {

Lk = (total dcost for all the next periods in DCBk)/Cm;
if (MR < miss h) {

Lk + = (total ccost for Pi+1 in CCBk)/Cr;
if (Cp > load h ‖ (Cp > load m && MR < miss m))

Lk + = (total ccost for Pi+2 in CCBk)/Cr;
}

}
/* computation of each server’s weight Wk */
for (min=max=k=0; k<N; k++)

if (Lk > max) max = Lk;
else if (Lk < min) min = Lk;

t diff = Nr/N; /* adjustable based on statistics */
dec = (max − min ≤ t diff) ? 1.0 : t diff / (max − min);
for (k=0; k<N; k++)

Wk = (max. allowable weight) − (Lk − min) ∗ dec;

Fig. 5 Pseudo-code example of load aggregation in LE.

(cwnd), and the RTT. However, we took a simplified
model for TCP bulk data transfer. LE assumes that
the server writes cwnd segments into the send buffer ev-
ery RTT while exponentially increasing the cwnd value.
The ccost is divided into multiple parts, and each part
is added to an appropriate slot in CCBk.

Through periodically performing the first step for
all N servers, LE gathers and maintains some workload
statistics for recent periods, as shown in Fig. 5.

• Second Step - Load Aggregation

When this step starts, all the slots in CCBk and DCBk

except for those for the current period Pi may include
CPU and I/O requirement of those tasks which were
not yet completed in the server Sk until the end of cur-
rent period (Ti+1). These slots correspond to the ag-
gregate load which would remain in the server at worst
until time Ti+1+max slots ∗slot len−P. Figure 5 is an
example pseudo-code for load aggregation. The thresh-
old variables miss h, miss m, and miss l specify high,
medium, and low cache miss ratio respectively. They
are given by the administrator through analyzing the
daily average cache miss ratio using the statistics gath-
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ered in LE or the real server logs. With those thresh-
olds, we merely intend to take into account the situation
of significant cache misses after the server startup (cold
misses) and to detect (if any) abrupt changes in miss
ratio. As reported in [11], [14], [19] and the references
cited therein, workloads are usually CPU intensive and
disk load has little effect on the overall performance in
busy Web servers with large memory, because locality
of reference tends to be very high in such systems. The
variables load h, load m, and load l are used to differen-
tiate the degree of CPU load given to the entire cluster.
The threshold t diff specifies the upper bound on the
difference between the number of new connections di-
rected to the most loaded server and that directed to
the least loaded server during the next period.

LE computes each server’s aggregate load index
and weight as follows. While comparing the cache miss
ratio and the average ccost per period with the given
thresholds, LE selects the slots which belong to all or
part of the next periods in CCBk and DCBk as the can-
didates. For example, when the overall load is low, it
selects only the next period Pi+1. The reason is that the
subsequent periods may include the ccost for file trans-
mission over the connections with long RTTs, and thus
we had better exclude them from computing current
server load. By considering the cache miss ratio and
the degree of overall load, we can decide the relative im-
portance between CPU load and disk load, and possibly
avoid overestimate of server load. The sum of ccost and
that of dcost in those candidate slots are divided by the
corresponding unit costs (Cr and Cm) respectively, and
then summed up to obtain an aggregate load index Lk.
Since the scheduling granularity is per connection, we
need to prevent the dispatcher from too sensitively re-
acting to load imbalance among the servers. Therefore,
each server’s weight Wk is computed by proportionally
reducing the Lk so that the maximum difference among
the Lk values may not exceed the threshold t diff. The
weights are recorded in the weight table. LE can be op-
timized to dynamically adjust those threshold variables
according to the workload characteristics. However, to
observe the basic performance behavior of CSLD, the
same algorithm as Fig. 5 with some fixed threshold val-
ues was used in all simulations of the next section.

4. Simulation

4.1 Workload and Simulator

To evaluate the performance of different load balanc-
ing strategies under various workloads, we developed
a configurable Web server cluster simulator, and con-
ducted trace-driven simulations using the access logs
of the 1998 World Cup Web site, gathered on its peak
day [22]. Table 1 summarizes the trace characteristics.

Our simulator consists of three models that simu-
late clients, front-end L4 switch, and back-end servers.

Table 1 Summary of trace characteristics.

No. % % % % %
logs static dynamic IMS INV HTTP/1.1

73.3M 71.76 0.02 27.87 0.35 19.69

The client model generates a stream of tokenized re-
quests based on the access logs. A token includes the
fields such as timestamp, client/server identifier, URI,
file size, and HTTP response code. Because the logs
lack a lot of information useful for a detailed simula-
tion [4], we made the client model change some fields
in the token according to the specified simulation op-
tions. Because the logs do not include connection es-
tablishment/teardown requests, the client model ex-
plicitly generates them when necessary to simulate the
connection-oriented HTTP. For those requests, TCP’s
three-way/four-way handshake procedures are replayed
among three models. When all processes are busy and
the number of connections pending in the listen socket’s
queue exceeds the specified limit called the backlog, the
back-end server model starts to reject new connection
requests. Each rejected connection request is resubmit-
ted to the front-end model, at worst two times using an
exponential backoff-based retransmission timer.

To obtain various workloads, we used the following
simulation options. The option N specifies the cluster
size. The option Rreq specifies the request rate. The
timestamp in a token indicates the time when the to-
ken arrives at the front-end model. If this option is ex-
plicitly specified, the client model sets the timestamps
by generating exponential inter-arrival times. Other-
wise, the timestamps are generated based on the times-
tamps in the access logs. The option RTT specifies the
client-to-server round-trip time. Once a new connec-
tion is accepted at the server, the subsequent HTTP
request arrives at the front-end after at least one RTT.
In practice, the client may be connected to the server
through the networks with low capacity or high traffic.
To study whether the WAN delays may affect load-
balancing performance, the client model generates the
RTTs using a long-tailed pareto distribution function,
and assigns them to new connections. In the next sub-
section, all simulations use a relatively long mean RTT
value (about 150ms) unless otherwise mentioned.

The option Pdreq specifies the proportion of dy-
namic requests. Since the trace includes few dynamic
requests, we made the client model generate additional
dynamic requests according to the given Pdreq. The
option Cdreq specifies the set of classes of dynamic re-
quests generated in the client model. The logs lack in-
formation on the processing costs of dynamic requests.
For simplicity, we assume that dynamic requests are
CPU intensive and their processing rate may range
from 1/10 to 1/100 of the processing rate of static re-
quests based on the previous study [13]. Thus, dynamic
requests are classified into up to 10 classes in the client
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model. For example, Cdreq = {2, 5} indicates that the
class 2 and 5 will be generated with equal probability
of occurrence. Assuming that the average cost for sat-
isfying static requests is 1ms, the client model assigns
20ms and 50ms to the class 2 and 5 respectively as the
mean processing costs. The processing costs for dy-
namic requests in each class are given by a normal dis-
tribution function with the specified mean value. The
standard deviation of the distribution is set to 20% of
the mean value specified for each class in all simulations
of the next subsection unless otherwise mentioned.

The front-end model simulates the TCP router and
the dispatcher. The TCP router forwards the tokens
from the client model to the target back-end models.
For a connection request token, the dispatcher selects a
target server according to the specified load balancing
strategy. The RR, LC and CSLD strategies work in the
same way as described in the previous sections.

Since any specific load estimation technique for the
WRR strategy is not known, we experiment with its
six variants, shown in Table 2, using three types of
load metrics as in [12]. Input metric Mi is the num-
ber of active connections. Forward metric Mp is the
server-polling response time. Host metric Mh includes
four metrics, Mh1 to Mh4, which are the number of
connections waiting for being accepted, and the num-
ber of processes that are waiting for disk I/O, fetching
static files, and creating dynamic pages respectively.
In practice, those metrics can be hardly obtained with-
out modifying the server code or running additional
processes. WRRp is the simplest variant since it uses
Mp only. The others use all three types of metrics.
The most idealized variant WRRi assumes zero mea-
surement overhead for Mh and the shortest period. To
favor the WRR strategy, we made the following ideal
assumptions. 1) Those load metrics are periodically
measured and gathered with minimal overhead and no
delay. 2) The average CPU time for processing static
requests and dynamic requests, denoted by Tsreq and
Tdreq respectively, are given by the administrator. 3)
The authors in [12] argue that the configuration param-
eters of different load metrics can be dynamically tuned
to the changing nature of workload. However, through
the simulation we found that such an automatic tune-
up is very difficult. Instead, the best configuration pa-
rameters obtained from the simulation were used.

Equation (1) shows how those six WRR variants
compute each server’s aggregate load index Lk. For all

Table 2 Six WRR variants. (o: used, x: not used, unit: ms)

Mi Mp Mh Period Overhead for Mh

WRRi o o o 200 0
WRRa o o o 500 5
WRRa′ o o o 500 10
WRRb o o o 1,000 5
WRRb′ o o o 1,000 10
WRRp x o x 500 0

variants but WRRp, the configuration parameters of in-
put, forward, and host metrics, fi, fp, and fh are set to
0.1, 0.45, and 0.45 respectively. The weight factor fI/O

is used to make Lk reflect the overall disk load in the
cluster. When disk load is low, medium, or high, it is
set to 1, 2, or 4. We multiply Mp by the average request
rate given to the server because the server would have
been loaded in proportion to the server-polling response
time. Since the average CPU cost for dynamic requests
is usually larger than that for static requests, we multi-
ply Mh4 by Tdreq/Tsreq. We set fdreq to a proper value
obtained from the simulation. We found that it should
be small (e.g., 0.1) due to the following reasons: 1)
When Mh4 is measured, every process that has been al-
ready in execution for creating a dynamic page will use
further CPU time smaller than Tdreq. 2) Load caused
by those processes was already partially reflected on
the other host metrics. 3) Since it is not known that
how many connections among Mh1 will request dynamic
content, the metric Mh4 may inaccurately reflects the
number of pending dynamic requests.

Lk = Mi ∗ fi +Mp ∗ (request rate assigned to Sk) ∗ fp
+ (Mh1 +Mh2 ∗ fI/O +Mh3

+Mh4 ∗ (Tdreq/Tsreq) ∗ fdreq) ∗ fh (1)

Using the aggregate load indexes, the front-end
model computes the weights in the same way as in
Fig. 5. Through the simulation, we learned that when
the overall load is too low or too high, the threshold
t diff should be reduced to prevent the dispatcher from
overestimating load imbalance among the servers.

The back-end model simulates the back-end nodes
that run Apache 1.3.16 server, configured with its de-
fault key configuration directives [2], [16], on the Linux.
It approximates the OS behavior for managing the sys-
tem resources. We set the process time slice to 100ms.
CPU is shared among server processes by a priority
(credit) based preemptive time-sharing scheduling algo-
rithm. The back-end cache uses the LRU replacement
policy. We set the cache size to 64MB. For each in-
coming token, this model performs a detailed queuing
model simulation based on the cost parameters. Ta-
ble 3 lists the average costs for the basic request pro-
cessing steps, measured on a 700MHz Pentium III ma-
chine with 256MB RAM and a 5,400 RPM disk drive.

Table 3 Cost parameters used in the simulator.

Parameters Cost (us)
connection establishment or teardown 132

process fork 1,400
context switch 35

basic processing steps (parsing URI, etc.) 213
response to an IMS or INV request 30

transmission of 512 Bytes to network 37
disk seek and rotational latency 15,600
disk transfer time for 4 KB block 300



HYUN et al.: CONTENT SNIFFER BASED LOAD DISTRIBUTION IN A WEB SERVER CLUSTER
1265

Table 4 Average server latencies in seconds achieved under various workload.

Cdreq Pdreq Rreq RR LC WRRi WRRa WRRb WRRa′ WRRb′ WRRp CSLB
Case-1 {3} 5.0% 4000/s 0.0226 0.2172 0.0186 0.0209 0.0229 0.0219 0.0230 0.0245 0.0223
Case-2 {3} 6.4% 6400/s 0.3469 0.5041* 0.1309 0.1759 0.1805 1.4940* 0.2113 0.1835 0.1500
Case-3 {4} 4.0% 4000/s 0.0267 0.2247* 0.0225 0.0254 0.0273 0.0256 0.0275 0.0298 0.0262
Case-4 {4} 6.0% 4800/s 0.1202 0.4606 0.0799 0.0932 0.1008 0.1003 0.1049 1.7166* 0.0829
Case-5 {5} 4.0% 4000/s 0.0428 0.2674 0.0347 0.0363 0.0423 0.0370 0.0429 0.7917* 0.0395
Case-6 {5} 6.8% 4000/s 0.9975 0.6065 0.2564 0.3802 0.4503 2.2888* 0.8784 2.6801* 0.3139

4.2 Simulation Result

Our simulator outputs a few metrics such as through-
put, user perceived latency, server latency, and rejec-
tion rate. Among others, we select the average server
latency as the main performance metric because it gives
a better view of the load balancing effect on the clus-
tered servers for various workloads. The server latency
is the delay from receiving a client request to sending
the first TCP segment of response. The rejection rate
indicates the rejection probability of new connections in
the servers. It is used as a complementary performance
metric when the servers are overloaded.

4.2.1 Comparison of the Basic Performance

Table 4 lists the average server latencies achieved by
RR, LC, six WRR variants, and CSLD for various work-
loads. The asterisk (*) indicates that the rejection rate
is not zero. The simulation conditions are as follows.
The cluster size (N) was set to 16. Exponential inter-
arrival times were generated at the specified request
rate (Rreq). Simulation was conducted for 30 minutes
after 15 minutes of warming-up. Case-1, 3, and 5 are
relatively light workload. Though Case-2, 4, and 6 are
a little heavy workloads, they do not seem to incur peak
load because RR shows zero rejection rate.

The most idealized WRRi performs best of all for
any case. Since RR performs better than what we ex-
pected, we will evaluate the performance of the others
on the basis of RR. CSLD also performs fairly well for
all cases. It performs slightly worse than a few WRR
variants when the overall load and the variation of con-
tent are low (Case-1, 3, and 5). However, it always
outperforms RR for any workload. Due to shorter load
measurement period, WRRa outperforms WRRb in all
cases, and WRRb sometimes performs worse than RR
for light workload with low variation of content (Case-1
and 3). This implies that a longer period has an impact
on the performance of WRR strategy.

WRRa′ and WRRb′ are the same as WRRa and
WRRb respectively except that load measurement over-
head is doubled, but perform much worse. WRRa′ sig-
nificantly increases the server latency and causes rejec-
tion of many connection requests particularly for heavy
workload (Case-2 and 6). This implies that the po-
tential benefits of using host metrics may be reduced

Table 5 Average server latencies in seconds achieved by RR
as Rreq increases when Cdreq={4} and Pdreq=5%.

3.0 K/s 4.0 K/s 5.0 K/s 6.0 K/s 6.2 K/s 6.3 K/s
0.0211 0.0341 0.0567 0.1734 0.4644 1.5899

Fig. 6 Normalized avg. server latency as Rreq increases.

or even outweighed by the imposed overhead. So, it
may be better to choose a long load measurement pe-
riod when the overhead is high. WRRp performs better
than RR only when the request rate and the propor-
tion of dynamic requests are high, but the average pro-
cessing cost for dynamic requests is low (Case-2). For
higher Cdreq, the server latencies significantly increase
even when the overall load is modest because WRRp

often incurs load imbalance among the servers. We
repeated the simulation while changing the period of
server-polling, but the results were similar. This im-
plies that load estimation based on server-polling only
is not sufficient to cope with the variation of content.

Because of the given long mean RTT (150ms), the
LC strategy does not perform well in most cases. It
performs better than RR, only when there are many
long lived connections due to high variation of content
(Case-6). Additional simulations confirmed that given
shorter mean RTTs, it performs better. This implies
that using input metric only is not sufficient to prop-
erly estimate server load in a WAN environment. We
will exclude LC, WRRb, WRRa′ , WRRb′ , and WRRp

from the results presented in the rest of the simulations
because of their low performance.
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Table 5 shows the average server latencies achieved
by RR as the request rate (Rreq) increases when Cdreq is
{4} and Pdreq is 5%. Figure 6 shows the average server
latencies of WRRi, WRRa, and CSLD, normalized by
those of RR. As Rreq increases, CSLD achieves higher
performance improvement ratio, compared to RR. For
heavy workloads, its performance comes close to that of
the most idealized WRRi. When Rreq is 6,300/s, about
11.35 million of requests are generated for 30 minutes,
incurring peak load. In such case, the overall rejection
rates caused by RR, WRRi, WRRa, and CSLD were
about 3.6%, 1.8%, 3.9%, and 2.1% respectively.

4.2.2 Performance Comparison of WRR and CSLD

We conducted the simulations while changing the de-
gree of content variation (Cdreq and Pdreq). The time
for each run of simulation is 1.5 hours with 15 minutes

Fig. 7 Normalized avg. server latency as the proportion of
dynamic requests (Pdreq) increases when Cdreq ={3}.

Fig. 8 Normalized avg. server latency as Pdreq increases when
Cdreq ={1,2,3,4,5}.

of warming-up. The request rate ranges from 1,860/s
to 3,683/s. Inter-arrival times are based on the times-
tamps in the logs. Figure 7 to 11 show the average
server latencies achieved by WRRi, WRRa, and CSLD
for the workloads with different Cdreq, normalized by
the corresponding ones of RR. The simulation results
showed the behavior that coincides with the results
shown in Table 5 and Fig. 6. As the rate of dynamic re-
quests increases, the server latency and user perceived
latency drastically increase because of rapid increase in
the variation of content and the overall load.

The variation of content (Cdreq) grows in the order
of Fig. 7 to Fig. 11. Given the same Pdreq, the workload
of Fig. 7 and that of Fig. 8 incur the same overall load,
but the latter involves a little higher variation of con-
tent. Similarly, the workload of Fig. 11 incurs only a
little more load than that of Fig. 10, but it has much
higher content variation. As Cdreq increases, CSLD

Fig. 9 Normalized avg. server latency as Pdreq increases when
Cdreq ={4}.

Fig. 10 Normalized avg. server latency as Pdreq increases
when Cdreq ={5}.
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Fig. 11 Normalized avg. server latency as Pdreq increases
when Cdreq ={2,4,6,8,10}.

starts to outperform WRRa at lower Pdreq. For ex-
ample, it starts to outperform WRRa at Pdreq=4% in
Fig. 7, whereas it does so at Pdreq=2% in Fig. 10. The
reason is that content sniffing based load estimation en-
ables CSLD to alleviate dynamic load imbalance among
the servers caused by the variation of content.

Every curve in all figures has a valley of “V” shape.
Those points located after a valley indicate the nor-
malized average server latencies under peak loads. All
strategies showed low rejection rates because the re-
quest rate was not high (at most 3,683/s) and further,
the duration of peak request rate was relatively short.
Another reason is that when a server rejects a connec-
tion request, the client model retransmits it at worst
two times using an exponential backoff-based timer,
and the retransmitted request is likely to be accepted
at the server after a transient peak of load. RR and
WRRa rejected new connection requests much more
than WRRi and CSLD. For example, CSLD showed
zero rejection rate when Cdreq={3} and Pdreq=13.6%,
whereas WRRa incurred rejection of 58,059 connec-
tion requests. WRRa performs slightly worse than RR
at the point just after each valley because host met-
rics measurement overhead (5ms), relatively large com-
pared to the period (500ms), has a significant impact
on the performance under such workloads.

Around the middle of each curve in all figures, the
performance improvement ratios (compared to RR) of
WRRi, WRRa, and CSLD are low. The reason is as
follows. Since the simulator uses a random function
to generate additional dynamic requests, the result-
ing load variation is relatively uniform. Given mod-
est workload, RR relatively performs well because cur-
rently occurring load imbalance among the servers will
be often naturally reduced more or less by subsequent
requests that may involve another load imbalance. All
workloads in Fig. 7 to 11 have relatively long periods

with low request rate. Thus, the “average” server la-
tency is a favorable metric to WRRa that performs well
for light workload, whereas it is a little unfavorable to
CSLD that performs better for heavy workload. How-
ever, CSLD outperforms or competes with WRRa.

It seems to be very difficult to develop a practically
good load estimation technique for the WRR strategy.
Though WRRi performs best for most workloads, it
is infeasible. Despite many ideal assumptions (e.g.,
ideal load metrics, minimal host metrics measurement
overhead, short period, and zero feedback delay, and
optimized configuration parameters), WRRa performs
well for not every workload. The simulation results
of other variants also showed that the performance is
very sensitive to those conditions. In this paper, we
attempted to use the WRR strategy for dynamically
balancing servers load. We doubt whether this attempt
was not appropriate. Authors in [12] proposed WRR
as a load-sharing strategy to smooth out transient peak
overload periods on some servers rather than as a load-
balancing strategy. However, it also requires dynamic
load metrics feedback from the servers and tuning up
the configuration parameters to the changing workload
characteristics. Since it uses a longer period, it less fre-
quently imposes overhead in the servers. If the other
conditions were the same, it could perform as well as
or slightly better than WRRa for peak load periods.
However, due to a longer period, it is likely to fail to
balance load among the servers for the workloads with
high variation of content. It is also practically not easy
to implement such a sophisticated load-sharing tech-
nique. CSLD performed fairly well for all workloads.
Every figure showed that it competes with the most
idealized WRRi especially for heavy load. CSLD per-
formed worse than WRRa only when the overall load
is very low. But, this will not cause a significant prob-
lem because user perceived latency as well as the server
latency are very low in such case. It should be noted
that any optimization was not applied to CSLD be-
cause we wanted to observe the basic performance of
CSLD. Given a little optimization, it achieves better
performance for light workload as well.

We did not present the simulation results for the
workload with Cdreq={1} or {2}. In either case, the
performance improvement achieved by WRRi, WRRa,
and CSLD was at most 21% even if the proportion of
dynamic requests and the request rate are very high.
Performance behavior of CSLD was similar to those
described above. We also tested the scalability. Though
WRRi, WRRa, and CSLD always scaled better than
RR for large cluster sizes, RR also showed relatively
good scalability. Given heavy load and small cluster
size (N<12), the scalability of WRRa was not as good
as those of WRRi and CSLD.

All workloads mentioned above include HTTP/1.0
requests only. We repeated the simulations while gen-
erating HTTP/1.1 requests in the trace logs. Since the
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logs lack related information, the length of a persistent
connection was determined solely by the given Apache
configuration directives. As a result, the average num-
ber of requests delivered on a persistent connection
was very large. Such workloads somewhat decreased
the effectiveness of WRRi, WRRa, and CSLD because
the scheduling granularity is per connection. Despite
that we optimized WRRa to adjust the threshold t diff
based on the proportion of HTTP/1.1 requests and the
changes in overall load, it showed only a little perfor-
mance improvement. On the other hand, given such
optimization, CSLD achieved more improvement.

4.3 Discussion - Robustness and Overhead of CSLD

CSLD achieved 79-92% of accuracy in cache miss pre-
diction for static requests in the simulations using the
World Cup trace that has a relatively small working
set due to high locality of reference. Since we wanted
to experiment on different traces, we repeated the sim-
ulations using the UC Berkeley Web proxy trace [22].
The results were similar, except that the performance
of CSLD degraded a little more when both the request
rate and the variation of content are very low. This im-
plies that light workload with a large working set may
increase the impact of erroneous cache miss prediction
on the performance a little but not so critically. Since it
is common today to see the servers with large memory,
the impact of load caused by static requests on server
performance is more and more decreasing.

To mimic WAN delays, a pareto distribution with
mean 150ms was used for RTTs. When the rate of
static requests is very high, long RTTs are unfavorable
to CSLD that uses a simpler TCP transmission model
than that used in the back-end model. Though, CSLD
performs at least better than RR for such a workload.
Given a shorter mean RTT, it outperforms the others
even for light workloads with low content variation.

The standard deviation of dynamic request pro-
cessing costs (normal distribution) was set to a large
value (20% of the mean specified for each class), un-
favorable to CSLD, in the previous subsection. Thus,
there is a possibility of misestimate of server load be-
cause CSLD knows only the mean values. Though, the
performance of CSLD was fairly good. We repeated
the simulation while increasing the standard deviation.
The result showed that the sensitivity of CSLD to such
misestimate is not high. Its performance never signif-
icantly degraded until the standard deviation is set to
40% of each specified mean, and was still better than
that of WRRa for all workloads but very light one.

CSLD imposes CPU overhead on the front-end L4
switch, mainly for parsing URIs together with file ta-
ble lookup or class table search. However, our sim-
ple measurements showed that it never significantly de-
creases the routing throughput. It was at most about
200 us even for parsing a dynamic request that involves

searching a matching class in a relatively complex class
table which has a few tens of entries per parameter-
cost classifier. CSLD requires not an exact prediction
about when and what amount of load will be caused by
each request but an estimate for relative degree of each
server’s load compared to load of the others. Therefore,
there is room for further optimization. We are develop-
ing a simpler cache miss prediction technique with low
CPU and memory overhead, rather than a more accu-
rate one. In addition, we are studying a technique for
hiding the overhead of content sniffing by inter-request
times so that it may not be on the critical path of TCP
routing. In Section 3, we described that the content
sniffer is invoked for each request being forwarded to
the target server. Instead, we may consider copying in-
coming requests to a temporary buffer so that they can
be parsed and classified in a periodic batch-process.

5. Conclusion

We present a new content sniffer based load distribu-
tion (CSLD) strategy for L4 switch. A simulation study
shows that the performance advantages of CSLD over
WRR increase as the variation of content or the overall
load increases, and CSLD performs at least better than
RR for any workload. Performance results suggest that
load balancing strategies should take into account dy-
namic load imbalance among the servers caused by the
variation of content in order to improve the Web server
cluster performance. Our proposed content sniffing
based load estimation technique enables not only timely
and proper reaction to dynamic load imbalance but also
easy implementation, compared to that of WRR.

We developed a prototype CSLD as a loadable ker-
nel module and integrated it into a software L4 switch
called the Linux Virtual Server [24]. We are currently
optimizing it to improve the performance and to reduce
the imposed overhead. Some future work is necessary
for evaluating its performance in a real web server envi-
ronment. To simulate WAN delays, we are attempting
to add artificial delays to the packet routing mechanism
in the IP router. For a fair comparison, we should im-
plement a sophisticated load estimation technique for
the WRR strategy. We need a web server cluster bench-
mark which can not only generate a realistic request
traffic but also support dynamic content.
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