
1762
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

PAPER

A Scheduling Policy for Blocked Programs in

Multiprogrammed Shared-Memory Multiprocessors

Inbum JUNG†, Student Member, Jongwoong HYUN†, and Joonwon LEE†, Nonmembers

SUMMARY Shared memory multiprocessors are frequently
used as compute servers with multiple parallel programs execut-
ing at the same time. In such environments, an operating system
switches the contexts of multiple processes. When the operating
system switches contexts, in addition to the cost of saving the
context of the process being swapped out and that of bringing in
the context of the new process to be run, the cache performance
of processors also can be affected. The blocked algorithm im-
proves cache performance by increasing the locality of memory
references. In a blocked program using this algorithm, program
performance can be significantly affected by the reuse of a block
loaded into a cache memory. If frequent context switching re-
places the block before it is completely reused, the cache locality
in a blocked program cannot be successfully exploited. To ad-
dress this problem, we propose a preemption-safe policy to utilize
the cache locality of blocked programs in a multiprogrammed
system. The proposed policy delays context switching until a
block is fully reused within a program, but also compensates for
the monopolized processor time on processor scheduling mech-
anisms. Our simulation results show that in a situation where
blocked programs are run on multiprogrammed shared-memory
multiprocessors, the proposed policy improves the performance
of these programs due to a decrease in cache misses. In such
situations, it also has a beneficial impact on the overall system
performance due to the enhanced processor utilization∗.
key words: time sharing system, cache pollution, process
scheduling, cache locality, preemption-safe

1. Introduction

Cache performance depends on the locality of refer-
ences. If the sequence of addresses referenced by pro-
grams cannot all be stored in the cache, cache misses
occur. It is not possible to build a cache that is
large enough to hold the working sets of all programs,
nor is it possible to code all programs to avoid all
cache misses. However, several optimization techniques
based on small source-code changes are used for im-
proving cache performance [5], [6], [10]. A blocked al-
gorithm is a well-known optimization technique to re-
duce cache misses via improved temporal locality in
programs. This algorithm operates on submatrices or

Manuscript received December 1, 1999.
Manuscript revised February 16, 2000.

†The authors are with the Department of Computer Sci-
ence, Korea Advanced Institute of Science and Technology,
Taejon, Korea.

∗This work was supported in part by National Research
Laboratory Program funded by Ministry of Science and
Technology and university S/W research center program by
Ministry of Information and Communication, Republic of
Korea.

blocks matched with the processor’s cache size instead
of operating on entire rows or columns of an array.
Thus, this algorithmmaximizes reuse of the data loaded
into the cache before the data are replaced.

Much research has investigated a number of ef-
fective methods for exploiting the resources of multi-
processor machines [2], [4], [7], [14]. While this is help-
ful when one has unique access to a dedicated parallel
supercomputer, there is no way for a new program to
enter the machine until the previous program finishes.
Thus, many such machines are in fact shared among
many users. In particular, since multiprocessors with
low-cost high performance have become increasingly
available in recent years, it is attractive to use them as
compute servers that allows the users to have simulta-
neous access. The most common and easily-used type of
multiprocessors are the shared-memory bus-based ma-
chines, which contain multiple processors communicat-
ing through a shared bus. These machines are gener-
ally of small to moderate scale (usually less than 16–32
processors) due to problems with bus saturation with
higher numbers of processors. For many uses request-
ing simultaneous interactive access to the machine, time
sharing for the machine is a widely used for multi-
programming. When programs run on this multipro-
grammed system, multiple programs must share each
processor. However, in such environments, an operat-
ing system performs the context switching, since many
programs may be executing simultaneously. When us-
ing multiprogramming, in addition to the overhead
of context switching between the multiple processes,
the frequent context switching itself can affect process
cache behavior. After a context switch, a process may
be rescheduled on another processor, without the cache
data it had loaded into the cache of the previous pro-
cessor. Even if the process is rescheduled onto the same
processor, intervening processes may have overwritten
some or all of the cache data.

In particular, when programs exploit the blocked
algorithm to improve cache locality in a multipro-
grammed system, the blocks loaded into the cache
memory can be polluted between context switches.
Thus, the advantage of the blocked algorithm suffers
from the damage in cache locality. To address this
problem, we propose a preemption-safe policy to ex-
ploit the cache locality of blocked programs in a multi-
programmed system. The proposed policy delays con-



JUNG et al.: A SCHEDULING POLICY FOR BLOCKED PROGRAMS
1763

text switching until only a block is fully reused in the
program. However, since the delayed context switch-
ing can affect the running of other programs waiting
on a run queue, their waiting time should be compen-
sated. Thus, the proposed policy compensates the wait-
ing time of other programs with subtracting any extra
time blocked programs received from their next quan-
tum. This procedure ensures that the characteristic
of a blocked program itself can be utilized in a mul-
tiprogramming environment without greatly affecting
the running of other programs. Our simulation results
show that in a situation where blocked programs are
run on multiprogrammed shared-memory multiproces-
sors, the proposed policy improves the performance of
these programs due to a decrease in cache misses. In
such situations, it also has a beneficial impact on the
overall system performance by improving the proces-
sor utilization of other programs executing at the same
time.

The remainder of the paper is organized as follows.
Section 2 explains a blocked algorithm. Section 3 pro-
poses a preemption-safe policy. Section 4 presents the
simulation environment used in this study. In Sect. 5,
we measure the performance of a preemption-safe pol-
icy on multiprogrammed shared-memory multiproces-
sors. Finally, related work is presented in Sect. 6 and
we conclude in Sect. 7.

2. Blocked Algorithm

For some scientific programs, when accessing entire
rows or columns of large arrays in every iteration of
the loop, the cache misses due to limited cache capac-
ity can severely hurt performance. The Example 1 is a
naive matrix multiplication for matrices of size N × N
in C programming language. To produce the matrix Z,
the matrix X is multiplied by the matrix Y . The reg-
ister variable r is also used to reduce memory accesses.
Since this program operates on large data elements and
performs identical processing on data, it is parallelized
by assigning data elements to processors at the out-
most loop(i.e., line 1) according to the grain size. The
grain size means the fraction of matrix Z classified as
coarse, medium, or fine, depending on the computation
amount involved.

1: for(i = 0 ; i < N ; i++){ /* parallelized location */
2: for(j = 0 ; j < N ; j++){
3: r = X[i][j]; /* register allocated */

4: for(k = 0 ; k < N ; k++)

5: Z[i][k] += r * Y [j][k];

6: }
7: }
Example 1 : A naive matrix multiplication in C lan-

guage

Figure 1 shows that four processors are used for

Fig. 1 Memory access patterns of a native matrix
multiplication program.

parallel processing with the coarsest grain size(i.e.,
N/4). In particular, the shaded elements of matrices
illustrate the fractions being accessed by processor 1.
From the Example 1, the shaded elements of matrix
Z are reused N times each time in which the data are
brought. On the other hand, all elements of matrix Y
are reused N/4 times corresponding to the grain size
chosen. From this figure, we know that if the cache
size of a processor is not large enough to hold at least
N × N matrix, the data of matrix Y would have been
displaced before reuse. If the cache cannot hold even
one row of the matrix Z, then the data of matrix Z in
the cache cannot be reused. Thus, in the worst case,
2N3 + N2 words of data should be read from memory
in N3 iterations. The high miss rate on the reuse can
significantly slow down the system due to the increased
memory fetches to numerical operations.

To avoid this phenomenon, a blocked algorithm
can be exploited for some scientific applications [5], [10].
The blocked algorithm ensures that the elements being
reused can fit in the cache, since the original source
code is changed to perform on only submatrices of size
B, instead of operating on individual matrix entries.
Example 2 is a blocked matrix multiplication code.

1: for(kk = 0; kk < N ; kk += B){
2: for(jj = 0; jj < N ; jj += B){
3: for(i = 0; i < N ; i++){
4: for(k = kk; k < min(kk+B, N) ; k++){
5: r = X[i][k]; /* register allocated */

6: for(j = jj; j < min(jj+B, N) ; j++)

7: Z[i][j] += r * Y [k][j];

8: }
8: }
8: }
9: }
Example 2 : A blocked matrix multiplication in C lan-

guage

At the line 7 of this blocked program, we know that
if a block size B is chosen so that a B × B submatrix
of Y and a row of length B of Z can fit in the cache
memory, both Y and Z are reused B times each time
in which the data are brought. Thus, the total memory
words accessed is 2N3/B + N2 if there is no address



1764
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

Fig. 2 Memory access patterns of a blocked matrix
multiplication program.

interference in the cache.
Figure 2 shows a snapshot of the accesses to three

matrices when four processors are used for parallel pro-
cessing. From this figure, we know that each processor
accesses the fixed locations in just two matrices Y and
Z. Since these locations of two matrices Y and Z are
reused B times within the iterations of loop, they cause
good cache locality in this blocked program. On the
other hand, since all elements of matrix X are accessed
once during the overall execution time, they have not
greatly impact upon cache performance.

3. Preemption-Safe Policy

In the blocked program using B × B blocks, since the
blocks loaded into a cache memory are reused B times,
the number of memory references is significantly re-
duced. However, when run on a multiprogrammed sys-
tem, these reuses cannot be preserved, since many pro-
grams may be executing simultaneously, and each pro-
cessor must be shared among multiple programs. In
such environments, the frequent context switching can
affect program cache behavior. If intervening programs
wipe out a block of the blocked program before it is
not fully reused, cache performance degrades due to
the block displaced from the cache. To address this
problem, we propose a preemption-safe policy to keep
the advantage of the blocked algorithm even in a mul-
tiprogramming environment. The preemption-safe pol-
icy delays the context switching by the kernel scheduler
per quantum until only a block of the blocked program
is completely reused within a program.

To apply the preemption-safe policy in a multipro-
grammed system, the operating system uses two extra
variables per each process table (i.e., context table).
One is used for denoting the preemptable or unpreempt-
able state of a process. Another one is used for repre-
senting the delay period of context switching. Besides
the support of an operating system, blocked programs
are also modified so that they inform the operating sys-
tem of a start and end time of the computation for a
block.

Figure 3 shows the control flows between a blocked
program (i.e., blocked matrix multiplication) and an
operating system in situations where the preemption-
safe policy is used in a multiprogramming system. Be-

Fig. 3 Control flows of preemption-safe policy.

Fig. 4 Examples of process scheduling in preemption-safe
policy.

fore the computation for a block is started at line 3,
the blocked program sends a signal to the operating
system to request that it not be preempted. The oper-
ating system accepts this request and sets the state vari-
able of context structure to unpreemptable. The kernel
scheduler does not swap out the processes with the un-
preemptable state until their state variables change to
preemptable. When the computation for a block is fin-
ished at line 11, the program also generates a signal to
withdraw its unpreemptable request. At this time, the
operating system sets the state variable to preemptable,
and records the unpreempted period to the delay time
variable and performs the context switching immedi-
ately for waited other programs. Thus, the value of
the delay time variable is processor time pre-used by
the blocked program. This time should be compen-
sated for guaranteeing the fair processor usage among
all programs running together.

Figure 4 shows the operations in a run queue when
three processes are run under the multiprogrammed
system supported a preemption-safe policy. A kernel
scheduler assigns a process to a processor in a round-
robin fashion with a quantum length. The term Q de-
notes a quantum size. In this Figure, we assume that



JUNG et al.: A SCHEDULING POLICY FOR BLOCKED PROGRAMS
1765

the default value is 10 milliseconds except the unpre-
empted period, and that process 2 is a blocked program.
As shown in Fig. 4 (a), the process 2 has an unpreempt-
able state and monopolizes a processor during the de-
lay time, which is time to complete the computation
for a block. After completing all the computation for a
block, the process 2 should withdraw its unpreemptable
right. Figure 4 (b) shows that the process 2 is deviated
from the run queue after passing an unpreempted state.
In such situations, the kernel scheduler schedules only
two processes (i.e., process 1 and process 3) under the
round-robin manner with a default time quantum. Af-
ter an elapse of any extra time the process 2 received,
the kernel resets the delay time variable, and relocates
the process 2 into the run queue. From the operation
of the preemption-safe policy, we know that the de-
lay of context switching can help exploit the advantage
of the blocked algorithm, and also that the compensa-
tion procedure for pre-used processor time ensures the
fair processor usage for all programs running simulta-
neously.

However, using the preemption-safe policy invokes
additional signals to request to an operating system,
and needs kernel extensions as described in above. In
particular, since the excessive delay of context switch-
ing can affect other programs’ response times running
together with blocked programs, the operating system
should limit the delay period of context switching. If
a process does not yield a processor within a small
bounded period of time that is designated as a mul-
tiple of default quantum size (e.g., if a default quan-
tum is 10 milliseconds, it can be 50 milliseconds, 100
milliseconds, and so on), the kernel scheduler should
preempt it anyway and mark its context structure with
this involuntary preemption. After that, this process
suffers from the compensation procedure for pre-used
processor time as described above. However, even if
this process is preempted immediately, the reuse of a
block till then will improve cache performance. When
this process has its turn again after expiring the com-
pensation period, the operating system sets again the
state variable of its context structure to unpreemptable,
since it was preempted forcibly without the voluntary
withdrawal. Thus, this process can continue to execute
the remaining portion for computing the block under
the unpreemptable state, until it incurs the withdraw-
unpreemptable signal or exhausts the bounded delay
period again. In Sect. 5, we will measure the delay time
under our benchmark programs. This experience may
help the OS designer to designate the appropriate delay
period in the system.

4. Simulation Environment

4.1 Simulation Technique

The proposed preemption-safe policy can be applied to

Table 1 Timing values for cache coherency protocol.

Events Penalties
(operations) (cycles)

A write on a shared line 3
(Invalidate signal)
A cache miss 7
(The missed line is supplied by an another cache)
A cache miss 22
(The missed line is supplied by the main memory)

both the uniprocessor and the multiprocessors. How-
ever, scientific programs using the blocked algorithm
show data parallelism, since they perform identical op-
erations on all data elements and these elements are
assigned to various processors to parallelize the com-
putation. Thus, we use the multiprocessors to exploit
this parallelism.

In particular, we assume the shared-memory mul-
tiprocessors system with a shared bus (e.g., PC servers)
as a machine chosen for this study. This system is
widely used and commercialized for computing servers
due to its low-cost high computing power and ease of
use. These machines are also called UMA (Uniform
Memory Access) machines, since access to a memory
location via the bus takes the same amount of time
regardless of which processor is performing the access
and what memory location is being accessed. Cache
coherency is maintained across processors through a
variety of snooping and invalidation techniques. The
simulated environment for this machine is described as
follows.

The simulators consist of a functional simulator
that executes parallel programs and an architectural
simulator that models the shared memory multiproces-
sors. We use an efficient program-driven simulator,
MINT (Mips INTerpreter) [16] as a functional simu-
lator. We construct an architectural simulator based
on a shared-memory multiprocessor with eight proces-
sors and a shared-bus. Each processor is assumed to
be a RISC processor with the same cache size and
each instruction is executed in a single cycle except the
memory reference. We assume that cache structure is
128Kbytes direct-mapped with 16 bytes cache line size.
The simulated cache coherency protocol is the write in-
validation scheme [1]. On current microprocessors, the
main memory access-time is about 80 ns, the clock rate
is 250MHz (e.g., MIPS R10000, UltraSparc-II) and the
system bus width is 128 bits. Table 1 shows the timing
values for the cache coherency protocol with the above
microprocessors’ parameters and 1 address cycle and 1
bus operation cycle.

The standard MINT provides facilities to run only
one parallel program at a time, with each process per-
manently scheduled onto its own processor. Thus, we
extended it to run multiple parallel programs at the
same time and linked it with our scheduling module.
We employ the gang scheduling as our basic scheduling
module due to its easy implementation and less syn-



1766
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

chronization overhead [9]. In this basic scheduling mod-
ule, the number of runnable processes matches with the
number of processors available, and all runnable pro-
cesses of a program are scheduled to run on the pro-
cessors at the same time. When a time slice ends, all
running processes are preempted simultaneously, and
all processes from a second program are scheduled for
the next time slice. When the preempted processes
have their next time slice, they are rescheduled onto
the same processor to exploit the cache data loaded
into the cache of the previous processor.

To construct the kernel scheduler involving the
preemption-safe policy described in Sect. 3, we added
its functional structure to the basic scheduling mod-
ule. All processes invoked by the blocked program have
the unpreemptable state during the period for reusing
the blocks allocated to each process. The simulated
kernel scheduler does not swap out the processes with
the unpreemptable state until the state of all processes
changes to preemptable as described in Sect. 3.

As mentioned above Sect. 3, whenever a block is
executed, each processor incurs two signals to set or
reset variables of its context structure. Since the han-
dling of these signals needs the running of the kernel
scheduler, it can result in cache pollution to the data
already loaded into caches from matrices X , Y , and Z.
However, as shown in Fig. 3, since the lines before the
request-preemptable signal do not generate high cache
locality, the cache pollution due to this signal does not
affect cache performance. On the other hand, the codes
between line 4 and line 10 result in high cache locality
based on the reuse of B ×B blocks in matrix Y . How-
ever, since the completely reused blocks within these
lines do not reused in the next iterations, the cache
pollution due to the withdraw-preemptable signal at the
line 11 does not greatly affect cache performance. Thus,
in the simulation, we do not consider the cache pollu-
tion due to the running of the kernel scheduler, since
it has not impact upon cache locality induced by the
reuse of B × B blocks in matrix Y , and because the
kernel data for handling a signal are usually small in
the operating system like UNIX.

In particular, since the programs using the blocked
algorithm have compute-bound workloads, the cache
pollution due to other OS services (i.e., system calls,
page faults, and so on) is regarded as of little value.
Mogul and Borg [8] also reported that a compute-bound
workload generated almost exclusively involuntary con-
text switches due to quantum elapses (i.e., Only fewer
than 1% are caused by either system calls or page
faults). Thus, our research concentrates on the prob-
lem of cache pollution caused by context switches due
to quantum elapses.

In our simulation, a time slice (i.e., quantum) is
assumed to be 10 milliseconds. Also, the preemption-
safe policy needs additional signals between a pro-
gram and an operating system as described in Sect. 3.

Table 2 Timing values for process scheduling.

Operations Time
(cycles)

Quantum(10 milliseconds) 2,500,000
Signal 2,700
Context Switch 26,425

Table 3 Benchmark programs and their data sets.

Program Data sets

B-MM three 256 × 256 matrices
B-LU a 512 × 512 matrix
BS 131,072 sorting keys
MP3D 20,000 molecules, a 16 × 16 × 16 array
FFT 524,288 input points
OCEAN a 512 × 512 grid, 25 two-dimension arrays

Small [12] reported that the time for treating a signal
was 10.8µseconds and the time for treating a context
switch was 105.7µseconds on a BSD UNIX operating
system. From these considerations and the assumed
clock rate (i.e., 250MHz), the timing values used in
process scheduling are shown in Table 2.

4.2 Benchmark Programs

Table 3 shows six benchmark programs chosen for this
study and their data sets used. All these programs
are written in C language and use the synchronization
and sharing primitives provided by the SGI’s parallel
macros package. The programs using the blocked al-
gorithm are B-MM (Blocked Matrix Multiplication) [4]
and B-LU(Blocked LU Decomposition) [17]. Other pro-
grams are BS (Bitonic Sorting) [4], MP3D [11], FFT [17]
and OCEAN [17]. In choosing the non-blocked pro-
grams, we tried to include the programs of various
characteristics. Their characteristics are already well-
studied in many previous works [11], [17]. In our simu-
lation, since we are more interested in the performance
of blocked programs under the preemption-safe policy,
the data sets of all programs shown in Table 3 are estab-
lished so that two blocked programs are finished earlier
than other programs.

To parallelize the computation, we use the coarsest
grain size in all programs due to its less overhead for
handling a grain queue, which is driven by dividing the
data size described in Table 3 by the number of pro-
cessors (i.e., eight processors we assumed in the above
subsection). Thus, the grain size of the B-MM program
is a 32 × 32 block and that of the B-LU program is a
64×64 block, since blocked programs use the block size
B as a grain size for parallel processing.

5. Performance

To evaluate the performance of a preemption-safe pol-
icy in a multiprogrammed system, we also perform
blocked programs under a preemption policy that is
based on the basic scheduling module described in
Sect. 4.1. This policy uses the round-robin manner



JUNG et al.: A SCHEDULING POLICY FOR BLOCKED PROGRAMS
1767

with a typical default time quantum of 10 milliseconds.
On the other hand, except for the unpreempted peri-
ods, the preemption-safe policy also uses a default time
quantum like the preemption policy. We use the term
programming level to represent the number of programs
executing concurrently on a multiprogrammed system.
The higher the programming level is used, the more
programs are executed concurrently and the more likely
it is that programs may suffer from the cache pollution
due to context switching.

5.1 Single Blocked Program

• B-MM Program

Figure 5 (a) shows the performances of the B-MM
program on both the preemption policy and the
preemption-safe policy. The range of programming lev-
els is from level 2 to level 5. Table 4 shows the lists of
the programs used at each programming level. The per-
formances under the preemption-safe policy are better
than those under the preemption policy in all program-
ming levels. For example, the preemption-safe policy
shows the improved execution time of about 25.5% at
level 2 and about 12.5% at level 5, when compared to
the preemption policy. These improvements result from
a decrease in cache misses as shown in Fig. 5 (b). For
example, cache misses decrease about 32% at level 2
and about 10.7% at level 5. From these results, we
know that the decrease in execution time by using the
preemption-safe policy correlates perfectly with the de-
crease in cache misses. However, in both policies, the
higher programming levels use, the more cache misses
occur. The reason is that the amount of cache pollu-
tion between context switching increases as the more
programs are run at the same time. However, the
preemption-safe policy could prevent only a B×B block
from becoming the pollution due to context switching.

Fig. 5 B-MM program: Performance under various
programming levels.

Table 4 Lists of programs running together with B-MM
program.

programming levels programs

level 2 B-MM, FFT
level 3 B-MM, FFT, BS
level 4 B-MM, FFT, BS, OCEAN
level 5 B-MM, FFT, BS, OCEAN, MP3D

Figure 6 (a) shows the execution times of all pro-
grams running under programming levels 4 and 5 with
the preemption-safe policy. The results are normalized
to the execution times under the preemption policy.
This figure shows that other programs except the B-
MM program are not greatly affected in preemption-
safe policy, despite arbitrary delays on the part of their
execution. This result can be explained as follows. We
measured the number of delayed context switches when
the B-MM program is located in the unpreemptable
state for computing a block, since the excessive delay
of context switching may increase the waiting time of
other programs. However, during the period computing
a block, the average number of delayed context switches
is 3 or 4 times (i.e., 30 milliseconds or 40 milliseconds).
These delay periods do not greatly affect the execution
of other programs. Moreover, after the B-MM program
exploits an unpreemptable state, the kernel scheduler
does not permit the running of the B-MM program un-
til its pre-used time is exhausted. Thus, other programs
can be provided with the fairness in terms of processor
usage.

Figure 6 (b) shows the cache misses when programs
are run under programming levels 4 and 5 using the
preemption-safe policy. These results are normalized
to the cache misses under the preemption policy. As
shown in this figure, the preemption-safe policy pro-
duces the reduced cache misses in the B-MM program,
and also it decreases the cache misses of other programs
very little. Little reduction in the cache misses of other
programs is due to the fact that after the B-MM pro-
gram is done early, the remaining programs may un-
dergo the reduced cache pollution between their con-
text switching.

• B-LU Program

Figure 7 shows the execution times and cache misses
of the B-LU program obtained for two policies across
a range of programming levels. Table 5 shows the list
of the programs used at each programming level. Like
the B-MM program, the B-LU program shows better
performance in the preemption-safe policy because the
number of cache misses is decreased in all program-
ming levels. For example, when running at level 5,
the preemption-safe policy shows about 13.3% improve-
ment in the execution time due to the reduced cache

Fig. 6 Performance of B-MM program and other programs.



1768
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

Fig. 7 B-LU program: Performance under various
programming levels.

Table 5 Lists of programs running together with B-LU
program.

programming levels programs

level 2 B-LU, FFT
level 3 B-LU, FFT, BS
level 4 B-LU, FFT, BS, OCEAN
level 5 B-LU, FFT, BS, OCEAN, MP3D

Fig. 8 Performance of B-LU program and other programs.

misses of about 9.5%.
Figure 8 shows the execution times and the cache

misses when programs are run under at programming
levels 4 and 5 using the preemption-safe policy. These
results are normalized to those obtained for the preemp-
tion policy. The preemption-safe policy results in the
better execution time due to the reduced cache misses
in all programs. Like in the B-MM program, we mea-
sured the number of delayed context switches when the
B-LU program is on the unpreemptable state. However,
since the average number of delayed context switches is
4 or 5 times (i.e., 40 milliseconds or 50 milliseconds),
these delays do not affect the execution of non-blocked
programs as shown in Fig. 8 (a).

5.2 Multiple Blocked Programs

To measure the impact on the performance of
preemption-safe policy when running multiple blocked
programs, we run two blocked programs concurrently
at programming level 6. Figure 9 shows the execu-
tion times and cache misses of all programs including
two blocked programs when they are run under the
preemption-safe policy. All results are normalized to
those obtained for the preemption policy.

The Fig. 9 (a) shows that the preemption-safe pol-

Fig. 9 Performance of programs on programming level 6.

icy improves not only the execution times of two
blocked programs but also those of other programs.
However, the improving rates in blocked programs are
lower than those observed under programming level 4 or
5 shown in Fig. 6 (a) and Fig. 8 (a). The reason is that
the higher programming level is used, the more data
are displaced from the cache memory between context
switches. In particular, as the programming level is in-
creased, the rate of cache data replacement in the pre-
emption policy is higher than that in the preemption-
safe policy. Thus, the more cache misses in the preemp-
tion policy result in the more execution time, and the
normalized values are diminished as the programming
level is increased.

As shown in Fig. 9 (b), the preemption-safe policy
results in the reduced cache misses even in non-blocked
programs. As explained in the above subsections, this
result is because after two blocked programs are fin-
ished early, the remaining programs suffer less cache
pollution between their context switching than when
six programs are run concurrently. Moreover, since
the early completion of two blocked programs increases
other programs’ processor usage, it also has a beneficial
impact on their execution time.

5.3 Overhead

When the preemption-safe policy is exploited, kernel
extensions are needed to support additional signals
(i.e., request and withdraw of unpreemptable). The han-
dling of these new signals within the operating system
is the major overhead affecting on the execution time.
For Example, for the UNIX operating system, the ker-
nel extensions can be simply done through both allo-
cating two new signal numbers to the current signal list
and making the corresponding signal handler routines.

As mentioned in Sect. 3, the use of signals incurs
the time for handling them between the kernel and the
program. With the UNIX operating system, Small [12]
reported that 10.8µseconds are needed for treating a
signal such as either setting or resetting kernel vari-
ables. Thus, in our simulation, we already reflected
these time overheads as shown in Table 2. While these
overheads degrade the execution time of programs, the
decrease in cache misses due to the preemption-safe pol-
icy highly improves the execution time. To compare the



JUNG et al.: A SCHEDULING POLICY FOR BLOCKED PROGRAMS
1769

gain from the improved cache performance with the loss
from time overheads due to signals, we illustrate an in-
equality as follows:

G − P × N × O > 0
G : improved execution time
P : number of processes
N : number of signals from each process
O : time overhead due to a signal call

Only if the left side of this inequality is more than
zero, the proposed preemption-safe policy is valuable.
For example, in situations where blocked programs are
run under programming level 5 that are shown in the
Fig. 5 and Fig. 7, time overheads due to signals are
345,600 cycles (i.e., P : 8 processors, N : 8 blocks
× 2 signals, O : 2,700 cycles that is mentioned Ta-
ble 2). On the other hand, the improved execution
times due to the reduced cache misses are 75,309,351
cycles in the B-MM program and 280,148,974 cycles in
the B-LU program. Thus, since the signal overheads
are merely 0.1–0.4% as compared to the improved exe-
cution times, the preemption-safe policy is worthwhile
technique.

If the time overhead for handling a signal call is
greater than that of our system assumed above, specific
instructions can be used to ascertain the request and
the withdrawal of unpreemptable state. These instruc-
tions can reduce the run-time overhead due to the cur-
rent signal handling procedure, but it needs the hard-
ware mechanism to detect them and the compiler’s help
to arrange them.

6. Related Works

Previous research on blocking has been done on eval-
uating the performance of blocked algorithm [5], [6].
Lam [5] experimented with a matrix multiplication us-
ing the blocked algorithm under the various cache struc-
tures. This study calculated the optimal block size
based on given cache parameters that could avoid self
address interference. However, these previous studies
about blocking technique did not involve in a multipro-
gramming environment running several other parallel
programs.

Several studies have analyzed the cache perfor-
mance under a multiprogramming system [2], [8]. In
particular, Mogul and Borg [8] experimented with the
effect of context switches on cache performance in a
multiprogramming system. They classified simulated
programs as three types: a timesharing system with
a few intensive users, a compute-bound load with a
couple of larger programs, a repetitive client-server in-
teraction program. According to the classified types,
they divided the causes of context switches into system
calls, page faults or scheduler and measured the costs
of context switches for each program type on the basis

of the divided causes. As a result, this study reported
that the cache-performance costs of a context switch
are greater than all other context-switch costs.

Several previous studies have been reported the in-
teraction between scheduling strategies and cache per-
formance of programs [13], [15]. These studies for cache
affinity only focused on the footprints on the cache
memory remaining after context switching, they did not
consider the preservation of cache locality in a multi-
programming system.

When using multiprogramming, besides the over-
head of cache pollution, synchronization primitives can
substantially degrade the performance of parallel pro-
grams. If the processor that is to set the variable is pre-
empted, the processors that are running but waiting for
the variable to be set will waste processor cycles. Much
previous work has been reported for operating system
scheduling policies and synchronization primitives [3],
[14], [18]. In particular, Kontothanassis [3] investigated
synchronization algorithms used to avoid preempting
processes with an active lock. When a process with a
lock variable enters a critical section, it requests the
operating system not to preempt it until it leaves the
critical section. This non-preemption policy for lock-
ing mechanisms allowed the system to avoid the useless
work induced by other running processes stalled while
waiting for the lock variable occupied by a preempted
process.

The blocked algorithm makes good cache locality
for programs via source-code changes. If this local-
ity suffers from context switching in a multiprogram-
ming environment, the anticipated cache performance
cannot be obtained. In this paper, we proposed the
preemption-safe policy to preserve blocked programs’
cache locality in a multiprogramming system. In the
previous study for effective synchronization algorithms
in a multiprogramming system, this non-preemption
policy was used to avoid the preemption of the process
with an active lock [3]. On the other hand, we used this
policy to preserve the cache locality of programs.

7. Conclusion

In this paper, we have considered the performance of
the blocked algorithm on a multiprogrammed system.
The blocked algorithm improves cache performance by
increasing the locality of memory references. To ap-
ply the blocked algorithm, the existing programs are
modified to make the reused blocks, and these reused
blocks result in the enhanced cache locality. How-
ever, in a multiprogrammed system, the blocks loaded
into a cache memory can be polluted by the context
switching. To address this phenomenon, we proposed
a preemption-safe policy to keep the advantage of a
blocked algorithm even in a multiprogrammed system.
This proposed policy delayed context switching until
the block loaded into a cache memory was fully reused.



1770
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.9 SEPTEMBER 2000

Thus, this method gave blocked programs safe execu-
tion since they were not preempted during the period
computing a block. Also, this method guaranteed the
fair usage of processor time via compensating the pro-
cessor time pre-used by blocked programs.

Simulation results showed that the preemption-
safe policy improved the performance of blocked pro-
grams due to the reduced cache misses. In particular,
since the delay period of context switching was short,
it did not affect other programs’ response time. More-
over, since early finished blocked programs caused the
less cache pollution and the more processor utilization
for the remaining programs, the overall system perfor-
mance was also improved.

The preemption-safe policy needs the operating
system’s support and the program’s modification. How-
ever, for the programs with good cache locality, such as
blocked programs, exploiting the preemption-safe pol-
icy is worthwhile if the delay period of context switch-
ing does not severely affected programs’ response time,
because this policy can enhance the overall throughput
for a given system.

References

[1] J. Archibald and J.-L. Baer, “Cache coherence proto-
cols: Evaluation using a multiprocessors simulation model,”
ACM Transaction on Computer Systems, vol.4, no.4,
pp.273–298, Nov. 1986.

[2] A. Gupta, A. Tucker, and S. Urushibara, “The impact of
operating system scheduling policies and synchronization
methods on the performance of parallel applications,” Pro-
ceedings of the 1991 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer System, pp.120–
132, May 1991.

[3] L.I. Kontothanassis, R.W. Wisniewski, and M. L. Scott,
“Scheduler-conscious synchronization,” ACM Trans. Com-
puter Systems, vol.15, no.1, pp.3–40, Feb. 1997.

[4] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Intro-
duction to Parallel Computing (Design and Analysis of Al-
gorithms), The Benjamin/Cummings Publishing Company,
Inc., 1994.

[5] M.S. Lam, E.E. Rothberg, and M.E. Wolf, “The cache per-
formance and optimizations of blocked algorithms,” Pro-
ceedings of the 4th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pp.63–74, April 1991.

[6] A.R. Lebeck and D.A. Wood, “Cache profiling and the
SPEC benchmarks: A case study,” IEEE Computer, vol.27,
no.10, pp.15–26, Oct. 1994.

[7] C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic
processor allocation strategy for multiprogrammed, shared
memory multiprocessors,” ACM Trans. Computer Systems,
vol.11, no.2, pp.146–178, May 1993.

[8] J.C. Mogul and A. Borg, “The effect of context switches
on cache performance,” Proeedings of the 4th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp.75–84, Oct.
1991.

[9] J.K. Ousterhout, “Scheduling techniques for concurrent
systems,” Proceedings of the 3rd International Conference
on Distributed Computing Systems, pp.22–30, Oct. 1982.

[10] D.A. Patterson and J.L. Hennessy, Computer A Quanti-

tative Approach, 2nd ed., Morgan Kaufmann Publishers,
Inc., 1996.

[11] J.P. Singh, W.D. Weber, and A. Gupta, “SPLASH: Stan-
ford parallel applications for shared-memory,” Computer
Architecture News, vol.20, no.1, pp.5–44, March 1992.

[12] C. Small and M. Seltzer, “Scheduler activations on BSD:
Sharing thread management between kernel and applica-
tion,” Technical Report TR-31-95, Department of Com-
puter Science, Harvard University, 1995.

[13] M.S. Squillante and E.D. Lazowska, “Using processor-
cache affinity information in shared-memory multiprocessor
scheduling,” IEEE Trans. Parallel and Distributed Systems,
vol.4, no.2, pp.131–143, Feb. 1993.

[14] A. Tucker and A. Gupta, “Process control and scheduling
issues for multiprogrammed multiprocessors,” Proceedings
of the 12th ACM Symposium on Operating System Princi-
ples, pp.159–166, Dec. 1989.

[15] R. Vaswani and J. Zahorjan, “The implication of cache
affinity on processor scheduling for multiprogrammed,
shared memory multiprocessors,” Proceedings of the 13th
ACM Symposium on Operating System Principles, pp.26–
40, Oct. 1991.

[16] J.E. Veenstra and R.J. Fowler, “MINT: A front end for ef-
ficient simulation of shared-memory multiprocessors,” Pro-
ceeding of 2nd International Workshop on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp.201–207, Jan. 1994.

[17] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and method-
ological considerations,” Proceedings of the 22th Annual In-
ternational Symposium on Computer Architecture, pp.24–
25, June 1995.

[18] J. Zahorjan, E.D. Lazowska, and D. L. Eager, “Spinning
versus blocking in parallel systems with uncertainty,” Pro-
ceedings of the International Seminar on Performance of
Distributed and Parallel Systems, pp.455–472, Dec. 1988.

Inbum Jung received the B.S. de-
gree in electronics engineering from Ko-
rea University, in 1985, and the M.S. de-
gree in information & communication en-
gineering from Korea Advanced Institute
of Science (KAIST), in 1994. He is cur-
rently working towards the Ph.D degree
in computer science from KAIST. From
1984 to 1995, he was with the Computer
System Division of Samsung Electronics
Co., Ltd., Korea. His research interests

include operating systems, computer architectures, parallel pro-
cessing, cluster computing and multimedia systems.



JUNG et al.: A SCHEDULING POLICY FOR BLOCKED PROGRAMS
1771

Jongwoong Hyun received the B.S.
degree from Korea University, in 1986 and
the MS. degree in computer science from
Korea Advanced Institute of Science and
Technology (KAIST), in 1998. He is cur-
rently a Ph.D. student working in the
computer architecture group at KAIST.
From 1986 to 1998, he was with Com-
puter System Division of Samsung Elec-
tronics Do. Ltd., Korea. His research
interests include computer architecture,

cluster computing, and Web server.

Joonwon Lee received the B.S. de-
gree from Seoul National University, in
1983 and the M.S. and Ph.D. degrees from
the College of Computing, Georgia Insti-
tute of Technology, in 1990 and 1991, re-
spectively. From 1983 to 1986, he was
with Yugong Ltd., and from 1991 to 1992,
he was with IBM research centers where
he was involved in developing a scalable
shared memory multiprocessors. He is
currently a faculty member at KAIST. He

was a recipient of Windows NT source code. His research inter-
ests include operating systems, computer architectures, parallel
processing, cluster computing and Web server.


