IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

[PAPER

Buddy Coherence: An Adaptive Granularity Handling Scheme

for Page-Based DSM

Sangbum Leef, Inbum Jung!, Nonmembers, and Joonwon Leef, Member

SUMMARY Page-based DSM systems suffer from false shar-
ing since they use a large page as a coherence unit. The optimal
page size is dynamically affected by application characteristics.
Therefore, a fixed-size page cannot satisfy various applications
even if it is small as a cache line size. In this paper we present a
software-only coherence protocol called BCP(Buddy Coherence
Protocol) to support multiple page sizes that vary adaptively ac-
cording to the behavior of each application during run time.

In BCP, the address of a remote access and the address of
the most recent local access is compared. If they are to the dif-
ferent halves of a page, BCP considers it as false sharing and
demotes the page to two subpages of equal size. If two contigu-
ous pages belong to the same node, BCP promotes two pages
to a superpage to reduce the number of the following coherence
activities. We also suggest a mechanism to detect data sharing
patterns to optimize the protocol. It detects and keeps the shar-
ing pattern for each page by a state transition mechanism. By
referring to those patterns, BCP selectively demotes the page and
increases the effectiveness of a demotion. Self-invalidation of the
migratorily shared page is also employed to reduce the number
of invalidations.

Our simulations show that the optimized BCP outperforms
almost all the best cases of the write-invalidate protocols using
fixed-size pages. BCP improves performance by 42.2% for some
applications when compared against the case of the fixed-size
page.
key words: page-based DSM, granularity, false sharing, sharing
pattern, self invalidation, adaptive coherence protocol

1. Introduction

The distributed shared memory(DSM) across a network
of workstations(NoW) gains wide interests due to good
scalability and cost/performance empowered by easy
programming paradigm. Among various implemen-
tation approaches, page-based DSM utilizes an exist-
ing paged virtual memory scheme for providing shared
memory view. Page-based DSM has been advocated
for NoW since it requires neither programmer’s burden
for modifying existing software nor any hardware sup-
port. Despite such advantages, its poor performance
due to coherence overhead has hindered it from being
widely used. Page-based DSM systems maintain data
coherence at a fixed granularity size of the page size
to simplify the mechanism. Variables used by differ-
ent processors can be allocated into a same page since
the data sizes accessed by processors are smaller than
the page size in many applications. Such a page would

fThe authors are with Department of Computer Science,
Korea Advanced Institute of Science and Technology, 373-1
Kusung-Dong, Yusung-Gu, Taejon, 305-701, Korea

be falsely shared among the processors and may incur
unnecessary coherence activities. Large page size in-
creases false sharing][7].

Many researchers have tried to reduce false shar-
ing by maintaining coherence at the level of an object
based on programmers’ annotations. Nevertheless, they
cannot seem to gain wide acceptance in real systems
because it is difficult for programmers to understand
the dynamic sharing behavior of each application and
to modify existing application programs. A few re-
cent systems such as Blizzard[16] and Shasta[14] sug-
gested a framework for lightweight access control in a
software-only manner, where access control is allowed
at a subpage level by inserting code in an application
executable that checks the state of data being accessed.
They divide up the pages into fixed-size blocks of typi-
cally cache line size and successfully support fine-grain
sharing with reasonable cost. Their framework is con-
sidered as one of the most viable approach that can
solve granularity issue.

Reducing the size of a coherence unit, however,
will increase the number of remote operations in trans-
ferring a large data. Since networks are more efficient
for transferring a small number of large data than a
large number of small data, smaller grain size will bring
more negative effect especially for coarse-grained appli-
cations. The optimal page size satisfying various ap-
plications is difficult to decide. The size is affected
by various factors and more importantly by dynamic
factors such as accesses to shared variables by parallel
tasks and process migration. On the other hand, the
grain size of parallel processing is usually determined
by application characteristics and programming style.
This observation leads us to propose a DSM design that
allows the page size to change adaptively depending on
the behavior of parallel processes without causing pro-
grammers’ burden.

In this paper we present a software-only coherence
protocol to support multiple page sizes that vary adap-
tively according to the behavior of each application
during run time. When an application starts, all the
pages used are of the same given size. As the computa-
tion proceeds, each page size changes according to the
sharing pattern of the page. Many of the previous re-
searches including Shasta support multiple granularity
at an object level. They, however, lack in dynamic ad-

justment, and more importantly, depend on program-
mer’s annotation.

Our buddy coherence protocol(BCP) is built on a
directory-based write-invalidate protocol. In BCP, the
page size changes as the workload changes like the
buddy system[12] which allocates variable sizes of mem-
ory with merge/split operations. When a remote re-
quest is received, the owner node compares the address
of a remote access with the address of the most recent
local access. If they are to the same half of a page, the
page is considered to be truly shared. Otherwise, BCP
considers it as false sharing. Since such false sharing
can be eliminated by splitting the page into two, BCP
demotes the page to two subpages of equal size. The
subpages are exclusively owned by each of local and
remote nodes. After the reply for a request is deliv-
ered to the requester node, BCP checks if the buddy
of the replied page is owned by the node. If two bud-
dies belong to the same node, the number of remote
operations may be reduced by transferring both of the
pages for a request. Thus, BCP promotes two pages
to a superpage. Performance gains come from the re-
duction of remote operations and the improvement in
communication efficiency.

A page can be truly shared even when false sharing
is detected. Therefore, the demotion based only on the
false sharing detection may increase overhead without
any benefit for the following accesses. In order to reduce
useless demotions and promotions, we optimized BCP
by adding a feature utilizing data sharing patterns. It
detects and keeps the sharing pattern for each page by
a state transition mechanism. States of a page include
read-only, producer-consumer, migratory sharing and
the mixture of those patterns. By referring to those
patterns, BCP selectively demotes the page of mixed
patterns to reduce useless demotions. Self-invalidation
of the migratorily shared page is also employed to re-
duce the number of invalidations [17].

Our simulations show that a small fixed page size
degrades the execution time by 42.2% for some appli-
cations when compared against the best performance
using a fixed size page. And an optimized BCP out-
performs almost all the best cases of other protocols
using fixed size pages. The sharing pattern is unclear
when several different patterns are irregularly mixed in
the same page [9]. The self-invalidation feature of the
BCP, however, is shown to improve performance upto
19.2%.

BCP and the sharing pattern detection mechanism
are simple enough to be easily implemented on exist-
ing systems, and do not preclude other DSM techniques
such as relaxed memory models. Also the right size of
coherence unit is dynamically determined by the sys-
tem, and thus one of the most difficult decisions in DSM
design is resolved. Though our approach is assumed to
be implemented in page-based DSM, we believe that it
will be effective for the systems in other categories of

IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

DSMs.

This paper is organized as follows. BCP design and
the optimizations are described in Section 2. Section
3 covers implementation issues. Simulation framework
and the results are presented in Section 4. Some re-
lated works are reviewed in Section 5. Finally, Section
6 concludes this paper.

2. The Buddy Coherence Protocols
2.1 Basic Design

The workstations interconnected by a conventional net-
work is assumed as the platform for our scheme. Each
workstation is called as a node that will also stand for
a processor interchangeably. Virtual address space of
each node is divided into private and shared regions
like other DSM systems such as Shasta[l14]. Only the
shared region is managed by user-level DSM routines
and may be cached by multiple nodes. The DSM rou-
tines of each node keep a page table maintained by the
dynamic distributed manager algorithm without write-
back [13].

When neither a demotion nor a promotion hap-
pens, BCP behaves like other coherence protocols such
as a write-invalidate protocol or a write-update proto-
col. Though BCP may be built on any of them, we
choose and analyze the write-invalidate protocol as the
base protocol of BCP since it is more popular in con-
ventional DSM systems. The base protocol works as
follows: if a reading or writing node(requester) does
not have the page, it issues a read or write request
to the node owning the page(owner) and proceeds the
operation after it receives the copy from the owner; a
writing node issues an invalidation request to all other
nodes sharing the copy(sharers), and then, it owns the
page and is free to update the page until another node
asks for it. The page in each node is in one of the four
states: exclusive, shared-own, shared and invalid.

We call the page of a size defined by the operating
system a base page. The smaller chunk of a base page
and the larger size block merging multiple pages are
called a subpage and a superpage respectively. In BCP,
a page is said to be falsely shared between two nodes
if the currently or the most recently accessed offset of
each node belongs to different half of the page.

The operations of BCP can be described from the
views of the owner and the requester. The owner of
a page checks false sharing when it receives a read
or a write request from a requester. If false sharing
is detected, the owner splits the page into two sub-
pages(buddies) of equal size and migrates the requested
half to the requester. This operation is called a demo-
tion. When a requester receives the reply, it checks if it
already owns the buddy(the other half) of the replied
page. If it does, it merges two buddies to a superpage.
This is a promotion. The size of a page at an instance

LEE et al: BUDDY COHERENCE: AN ADAPTIVE GRANULARITY HANDLING SCHEME FOR PAGE-BASED DSM

would be 2™ or 1/2" times of a base page with an arbi-
trary integer, n. Each of a demotion and a promotion
may change the value of n by only one at a time in
order not to cause rapid change in the locality.

The control information on a page such as the page
size and the owner should be consistent among all the
sharers. Thus, the information changed by a demotion
or a promotion should be propagated to all the sharers,
and the sharers’ copies may be invalidated if the page is
being shared by multiple nodes. Such updates or inval-
idations incur considerable overhead which limits the
scalability of BCP as the number of nodes increases. In
order to guarantee scalability, BCP allows a demotion
or a promotion only when such overhead is not incurred.
That is, a demotion for a read request and a promotion
happens only when a page is exclusively owned by the
owner. A demotion for a write request happens even
when a page is shared by the other nodes since all of
the sharers would be invalidated not by a demotion but
by a write itself. Consequently, there is no overhead for
distributing information about demotions and promo-
tions, and the same degree of scalability is guaranteed
as the base protocol. We call this protocol a basic BCP.

2.2 Protocol Optimizations

A demotion or a promotion cannot guarantee perfor-
mance gain if the change in page size cannot satisfy the
sharing behavior of the following accesses. For exam-
ple, a demotion of a read-only page can provide little
benefit since the read-only sharing does not need the
migration of ownership. Even when a page is updated
by multiple nodes, if the whole page is accessed only
by one node at a time, a demotion may increase the
number of remote requests. If a promotion of an ac-
tively shared page is allowed, a number of demotions
and promotions may happen repeatedly and cause per-
formance loss rather than gain. In order to cope with
these weaknesses, we optimize the basic BCP by utiliz-
ing data sharing patterns.

2.2.1 Classification of Sharing Patterns

Previous researchers[2], [3] have identified the follow-
ing categories of shared objects: read-only, producer-
consumer, migratory and general read-write. We add
two more categories, private and mized resulting total
six types of sharing patterns.

A read-only page is the page that has not experi-
enced any write since it was created. While a page is
in the read-only state, the page is better to be kept
in a larger size. A producer-consumer page is writ-
ten by one node(producer) and read by a set of other
nodes(consumers). The accesses of the producer and
the consumers are usually phased in. This type of shar-
ing would favor a write-update protocol rather than a

write-invalidate protocol since the result of a write by
the producer is to be read again by the consumers.

A migratory page is the one that is accessed by
multiple nodes, but only by one node at a time. The
accesses of each node are usually introduced by a read
and include one or more writes. Self invalidation, in
which the owner does not copy but migrates a page
even for a read request, can reduce the number of in-
validations in handling this type of pages[17].

A private page is accessed only by a single node.
Though a page belongs to the shared region, sharing
may actually happen neither for the whole page nor
during the whole execution time. If we can differenti-
ate such a non-shared portion from a page, the number
of coherence activities will be reduced. When a page
shows multiple sharing characteristics, the state of the
page is defined as mized. It is expected to be a poten-
tial source of false sharing. A general read-write page
means all pages that do not fall into any of the above
categories. Sharing of a general read-write page will
happen irregularly in fine granularity. Thus, a smaller
page will show better performance for it.

Synchronization is usually provided not through
shared memory but in library-like implementation since
synchronization variables are accessed in a totally dif-
ferent way than normal data. Thus, our classification
does not include a category specialized for them.

2.2.2 Detection of Sharing Patterns

Though an object may have its inherent sharing pat-
tern, the sharing pattern at a page-level may appear
differently due to false sharing or fragmentation[9]. The
set of sharers and the portion accessed by each node
may be changed during run time. Such changes will
cause transitions in types of sharing patterns continu-
ously. One way to detect sharing patterns is to keep
a historic access stream for each page and analyze it
when a decision is needed. However, such a method
incurs significant overhead since the decision should be
made for every shared access.

We suggest a mechanism to detect the sharing pat-
tern of each page at run time as shown in Figure 1.
Each of shaded areas means the pattern that a page is
showing at an instance. A pattern is composed of one
or more states which are denoted by circles. A page
starts either as read-only or as private according to the
first access to it. If the first access is a read, a page be-
comes read-only(RO) and remains in RO until a write
happens. If a write is done by the owner, the page is
considered as producer-consumer. Otherwise, the state
of the page becomes general read-write. If the first ac-
cess is a write, a state becomes private(PR). The state
becomes general read-write by a remote access.

To identify the producer-consumer pattern, three
more internal states are introduced: single pro-
ducer(1P), single producer single consumer(1P1C) and

pr oducer - consumner

————— > local write
————— remotewrite

(last-reader) accessisissued by last reader
(owner) access is issued by owner
most local accesses which do not change a state are omitted

Fig. 1 Detection Mechanism of Sharing Patterns

single producer multiple consumers(1PMC). 1P means
there exists no other copy but the page owned by the
producer. 1PxC means x shared copies exist besides
the owner’s copy. 1P state is changed to 1PxC by x
times of remote reads. A local write changes the state
from 1PxC to 1P since the page is always owned by
the producer node. If a remote write happens, this
producer-consumer pattern is violated and the page be-
comes general read-write. When a page is in 1P1C, and
if the consumer issues a write, the pattern of the page
falls into the mixed category since it is a typical pattern
of migratory sharing.

For a migratory pattern, the state for an exclu-
sive copy(M1) and the state for two copies(M2) are em-
ployed. If a remote write happens for any exclusively-
owned page, the page is considered as migratory and
the state becomes M1. A remote read is allowed only
once and it changes the state to M2. When a page is in
M2, and if the sharer issues a write, the page remains
as migratory and the state becomes M1. If another
remote read happens, the page is considered as mixed
since the pattern is the same as 1IPMC. Otherwise, the
page becomes general read-write.

The state for the general read-write pattern is split
into G1 for an exclusive copy and G2 for two copies
in order to detect a producer-consumer pattern and a
migratory pattern. When a page is in G2, the page be-
comes producer-consumer either by a local write or by
a remote read. A remote write in G1 and the sharer’s
write in G2 change the pattern of the page to migratory.
Otherwise, the page remains as general read-write.

Finally, a mixed pattern is denoted by MX. The
page remains in MX while only local accesses happen.
In order not to make most pages fall into the mixed
pattern, the pattern is changed into general read-write
by the following remote access.

As shown in Figure 1, the detection mechanism

IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

works like a consistency protocol. It, however, just
provides a hint for the current sharing patterns at a
moment. It may be combined with the state transition
of a coherence protocol.

2.2.3 Optimizations

Our protocol optimizations include the selective demo-
tion/promotion based on sharing patterns and the self-
invalidation of migratory pages.

If any sharing pattern of a page is known, we can
handle it in a specialized manner for utilizing its char-
acteristics. Thus, the selective demotion/promotion is
based on the basic heuristic that a falsely shared page
should be demoted only when it does not show any
typical pattern. In this optimization, a demotion is al-
lowed only when the pattern of a page is either mixed
or general read-write. The demotion of a mixed page is
expected to derive any single pattern, while the demo-
tion of a general read-write page is done for supporting
the irregular and fine-grained sharing in such a page.
Additionally, the protocol does not allow a demotion
for a remote write request if the sharer exists, that is,
the page is in G2. This constraint is based on the ratio-
nale that the demotion in G2 may not be more useful
than keeping the detection process since G2 can be con-
sidered as a process of detection rather than a resulting
state.

If a promotion is allowed when a page shows dif-
ferent pattern from its buddy or the pattern is either
mixed or general read-write, demotions and promotions
may be repeated in turns. Therefore, a promotion is al-
lowed when two buddies are of the same pattern that
is neither mixed nor general read-write. We call this
version of optimized protocol BCP-sdp(Selective Demo-
tion/Promotion).

In the protocol optimized by the self-invalidation,
the owner migrates a page for a read request if the page
is detected as migratory. Therefore, the arrow from M1
to M2 and the state of M2 in Figure 1 can be omitted.
We add this feature to BCP-sdp and call the new pro-
tocol BCP-si(Self-Invalidation). Though the protocol
can be further optimized by adding another states for
checking if the following accesses keep the pattern after
a self-invalidation, we left it as a future work.

BCP resets the sharing pattern of a subpage that is
newly created by a demotion as follows. The requester’s
subpage demoted by a read request becomes read-only,
and the other buddy subpage becomes private. When
a demotion happens, BCP has no information on the
sharing pattern of each subpage. Thus, resetting the
pattern and letting the page undergo the whole detec-
tion process may be better than assuming any uncertain
pattern.

LEE et al: BUDDY COHERENCE: AN ADAPTIVE GRANULARITY HANDLING SCHEME FOR PAGE-BASED DSM

Tag
Next Format of Clustered
V | PPNO = ATTRO Page Table Entry
(Subblocking factor=4)
V| PPN1 ATTR1
v | PPNn2 ATTR2 v : valid bit
PPN : physical page number
V| PPN3 ATTR3 ATTR : attributes
Fig. 2 Clustered Page Table Entry

3. Implementation Issues

As mentioned earlier, BCPs are assumed to be built
on a software DSM system with the feature of inline
state checks for access control such as Blizzard[16] and
Shasta[15]. We do not attempt to cover the implemen-
tation issues in the full system. We instead focus on a
several engineering issues that may cause modifications
on existing systems for implementing BCPs.

Access control can be implemented by adding a
shared access check in the executables. Such inline state
checks instead of depending on virtual memory hard-
ware eliminate the need for expensive OS interactions
for manipulating page protection. An executable edit-
ing program or a compiler inserts a code before LOADs
and STOREs. The code checks if the target address is
in the shared memory range which is above a certain
address in each processor’s address space and invokes
protocol handlers. The user-level handlers execute co-
herence actions with their own page table and resume
with a physical address for the local processor. As a re-
sult, any granularity can be supported without depend-
ing on OS and MMU. The details of the implementation
and the optimization can be found in [16] and [15].

The structure and management of the page table
may have potential effects on the performance since
BCPs create or destroy pages frequently. If page ta-
ble entries are dynamically inserted or deleted, consid-
erable overhead is expected for restructuring the page
table. If the size of the page table is statically set to
contain the maximum number of entries, the space over-
head will be significant. Though technology trends mit-
igate space overhead, a large number of page table en-
tries will cause delay in looking up the table. Such delay
is also incurred in other DSM systems that support fine-
granularity through a small fixed-size page. When we
take into account that most operating systems imple-
ment page tables in level-three to cover 32-bit address
space, more levels of indexing would be practically re-
quired for fine-grained pages.

We suggest clustered page tables as in [18] for
maintaining fine-grained pages in BCPs. The clus-
tered page table is an extension of a hashed page table
that stores mapping information for several consecutive
pages with a single tag as shown in figure 2. The ta-
ble lookup time can be reduced since the table walk
may not be iterated. BCP can naturally represent su-

perpages and subpages in the clustered page table. To
represent a page of multiple size of a minimum sub-
page, only the first minimum subpage that belongs to
the page keeps valid information. The number of pages
sharing a tag is called subblocking factor. If a wide
range of page size is required to be supported, the sub-
blocking factor must also be increased. According to
the requirement, BCP page table can be designed in ei-
ther a single level or two-levels. A two-leveled structure
using subblocking factor of 16 can cover the page sizes
from 32 bytes to 8 Kbytes.

The format of a page table entry should also be
modified to include page size information and the most
recently accessed offset. Additionally, the type of shar-
ing pattern should be kept for BCP-sdp and BCP-si.
The offset and the type of sharing pattern require new
fields of 12 bits and 4 bits respectively for every page
table entry. The number of bits for the offset assumes
4 Kbyte base page. Even though it is required to know
which node is the last-reader of a page, it does not need
extra information since the copy sets of most DSM sys-
tems keep the sequence information.

However, the page size information should be
maintained with the tag field. Otherwise, BCPs repeat
references to each entry of intermediate-sized pages to
reach a subpage. Such a repetition can be discarded
with a stream of bits representing each minimum sub-
page. If we set only the bits for the first subpage of each
page, the stream is divided into several substreams.
When an address falls into a substream and if the num-
ber of zeros in the substream is N, current size of the
page including the address will be 21°8(V+1) times of
the minimum size.

Though BCPs can start with a base page of any
size, the size would affect the resulting performance
since the efficiency in converging to a proper size can
changes. If DSM designer needs a large base page for
any reason, we can tune up BCPs performance by loos-
ening the demotion condition and by tightening the
promotion condition, and vice versa. The conditions
described in the previous section are not tuned for any
page size or any application. The optimal base page
sizes under various conditions are suggested in the next
section.

4. Simulations
4.1 Framework

For the performance study, we developed a program-
driven simulator on MINT[20]. Six parallel applica-
tions from SPLASH/SPLASH-2[21] suites are used as
the workload for the simulator. We tried to include the
applications of various characteristics. Their character-
istics are already well-studied in many previous works[9]
as summarized in Table 1.

Four coherence protocols, base write-invalidation

6
Table 1 Workload Specification
[[Application | Problem Size | Sharing | Granularity ||
FFT 64K double 1P-1C coarse
LU 512 by 512 matrix,| 1P-MC coarse
16 by 16 blocks
MP3D 10000 molecules, |migratory | fine-medium
10 iterations (varying)
Ocean 130 by 130 ocean 1P-1C fine read
coarse write
Pthor 1000 ticks MP-1C fine
100genT, 10cyc
Water 512 molecules 1P-MC coarse

protocol, basic BCP, BCP-sdp and BCP-si, are simu-
lated with a base page size varying from 64 bytes to 4
Kbytes. We use the total execution time in processor
cycle as the metric. The execution time is the elapsed
time from program start to program end.

A NoW of 32 nodes is assumed as an architec-
tural environment. Each node uses 200 MHz CPU and
main memory sufficient to hold the simulated problems
without paging. Two-leveled clustered page table is as-
sumed, and consequently a page size can vary from 32
bytes to 8 Kbytes regardless the base page size. The
nodes are interconnected by an ATM network with a
point-to-point bandwidth of 155 MBit/second. The
simulations conservatively account for the minimum
communication delay (2.74 psec/53 bytes on the wire
and 3000 cycles for socket overhead) and the worst case
of the software overhead of handling a page table in the
user-level (70 cycles and additional 10 cycles for keep-
ing sharing patterns) and demoting / promoting pages
(150 cycles). The instruction counts of our experimen-
tal codes are used as the software overhead. Instruction
references are assumed to take one cycle.

4.2 Results and Analysis
4.2.1 Overall Performance

Figure 3 shows the execution times of the applications
using the base page of seven different sizes. In the base
protocol, the execution time sensitively changes for ev-
ery application according to page sizes. When a page is
smaller than the best size, the extra delay is caused by
the increased number of remote operations due to both
of true and false sharing. When a larger page is given,
the delay is increased not only by the sharing that po-
tentially happens falsely but by the transmission delay
due to its large messages. FFT and LU of Figure 3-(a)
and (b) inherently show only a small number of coher-
ence operations and no false sharing. Only FFT shows
a few fragmentations. In this case, we can expect only
a reduction in communication overhead by a demotion.
Basic BCP fails in the speedup for them when small
base pages are given. Its loose conditions for a demo-
tion and a promotion result in a number of ineffective

IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

demotions and promotions and their overhead exceeds
performance gains. However, BCP-sdp and BCP-si re-
duce the number of operations and perform well for all
page sizes. In LU, they achieve the speedup upto the
level of the best case even for a 4 Kbyte page.

The granularity of MP3D varies during run time
since it is proportionally determined by the amount of
work a node does between barrier synchronizations. An
adaptive approach in page size, therefore, is expected
to satisfy the inherent dynamic feature. Figure 3-(c)
supports such a hypothesis. BCP-si is superior to the
base protocol for all sizes of base pages while basic BCP
is not for a few small pages. BCPs also show efficient
convergence to smaller pages when large base pages are
given.

In Ocean, the dominant sharing happens in borders
to the neighbor for each partition. While write accesses
are local and coarse-grained, remote read accesses are
very fine-grained especially along column-oriented bor-
ders. Thus, there is little false sharing but significant
fragmentation when larger pages are used. We expect
BCPs can solve the inherent multiple granularity. Fig-
ure 3-(d) shows the expected results. Basic BCP can-
not provide speedups for most page sizes. However, the
other protocols reduce the execution time through the
utilization of sharing patterns and the self-invalidation.

Pthor has an irregular computation containing
pointers to linked lists, which has made it difficult to
utilize regular patterns. However, we expect the adap-
tive feature of BCPs can solve this problem of irregu-
larity in Pthor. Figure 3-(e) shows that BCPs perform
well in a very regular fashion as expected. Each opti-
mization achieves stepwise speedups.

Water-spatial shows very similar behavior to LU
without any false sharing or fragmentation. Another
characteristic is that each water molecule is allocated
in a separate page, and thus the 1P-MC sharing pat-
tern is expected. In Figure 3-(f), BCPs perform well by
reducing communication overhead. However, the self-
invalidation of BCP-si provides no performance gain
since its producer-consumer pattern is kept even for
larger pages and the number of migratory patterns de-
tected in execution is not large enough to affect the
performance.

We conclude that BCPs outperform the base proto-
col, especially for the applications containing irregular
sharing behavior.

4.2.2 Practical Speedup

Table 2 summarizes two cases of comparisons between
the base protocol and BCPs. When we compare the
best cases of the base protocol and BCP-si without
considering any given size of a base page, BCP-si is
superior to the base protocol for all of the applications.
The best case comparison, however, has no meaning
since the base page must be fixed at the time when the

LEE et al: BUDDY COHERENCE: AN ADAPTIVE GRANULARITY HANDLING SCHEME FOR PAGE-BASED DSM

(8 FFT
380 ¢ ‘ ‘ ‘ ‘ ‘
7 L Base protocol —— |
3 g Basic BCP
3 30f N BCP-sdp = |
> BCP-§ -o--
5§ 30t
8 30
S om0}
g
s 260 |
E
= 240 -
(=}
s 220+
L% 200 -
180 ‘ ‘ ‘ ‘ ‘
64 128 256 512 1024 2048 4096
Base page size (bytes)
(c) MP3D
1100 ‘ ; ;
Base protocol ——
1000 - Basic BCP -
| BCP-sdp =/ |
900 BCP-si o/
800 1

700
600
500
400
300}

Execution time (1000000 CPU cycles)

L g x\g

200 —— —
64 128 256 512 1024 2048 4096
Base page size (bytes)
(6) PTHOR
6000 . . . : :
T L Base protocol —+— /]
g s Basic BCP
& 5000 b BCP-sdp ~*/ |
2 BCP-si -o/-
o 4500 A
8 4000 1
S 3500 1
g
oy 3000 1
£
= 2500 1
o
g 2000 1
L% 1500 &= = g 1
1000
64 128 256 512 1024 2048 409
Base page size (bytes)
Fig. 3

DSM system starts up. The comparison should be done
in the designer’s view in determining the size of a base
page. BCP-sdp and BCP-si perform well for most ap-
plications when the base page size is in the range from
256 bytes to 1 Kbyte. We assume 512 bytes as the base
page size for BCP-sdp and BCP-si, and compare them
with the base protocol using a 64 byte fixed-size page.

Lower rows in the table shows the execution times
of the base protocol, BCP-sdp and BCP-si when the
base protocol uses a 64 byte base page and BCPs use a
512 byte base page. BCP-sdp fails in speedup for MP3D
and Ocean since the optimizations of BCP do not al-
low enough number of demotions to converge to the

(b) LU-Decomposition

3000 T T T
n Base protocol —+—
oS 2800 - Basic BCP =
3 BCP-sdp -
2 2600 BCP-si -/~
(8}
S 2400 1
Q
S 2200]
g
_“g’ 2000 1
§ 1800 1
‘g A
1600 q
a
1400
64 128 256 512 1024 2048 4096
Base page size (bytes)
(d) Ocean
5000 T T T
0 Base protocol ——
o 4500 - Basic BCP -~
& BCP-sdp -
2 4000 BCP-si -o-/ /4
X ;
§ 3500 1
a 3000 1
_°§’ 2500 1
§ 2000 1
8
1500 &]
i
1000
64 128 256 512 1024 2048 4096
Base page size (bytes)
(f) Water-Spatial
2100 T T T T T
T Base protocol —+—
% 2000 - Basic BCP -
L BCP-sdp ~*—/ |
> 190 BCP-gi -o-
O 1800
Q
Q
g 1700
=) 1600
()
£ 1500
o
2 1400
1300
a
1200
64 128 256 512 1024 2048 4096

Base page size (bytes)

Changes in Execution Time According to Base Page Size

Table 2 Speedup of BCPs Against Base Protocol
I Size [FFT [LU [MP3D] Ocean | Pthor | Water]|
Base(best) 199.67 [1537.40 | 222.81 | 1427.98 | 1527.39 | 1292.23
page size 1K 512 128 64 128 128
BCP-si(best) [197.72]1529.12]212.68 [1298.74 | 1370.89 [1283.65
page size 1K 512 512 64 256 256
Base(64) 341.87|1734.21 | 242.95 | 1427.98 | 1600.38 | 1320.23
BCP-sdp(512) [201.28 [1534.81 | 245.83 | 16.9.48 | 1515.44 [1302.37
(speedup, %) 41.12 11.50 -1.18 -12.71 5.31 1.35
BCP-si(512) 200.75|1529.12 | 212.68 | 1439.52 | 1429.10 | 1298.73
(speedup, %) 41.28 11.83 12.46 -0.81 10.70 1.63

(10°CPU Cycles, bytes)

optimal size for these fine-grained applications. BCP-si

-91 INO ‘I9AOMOY ‘[g]uotyejuowdely pue SULIRYS oS[e]
£Aq Po3103STIp dIR JIuUn I03IR[© Ul suiv)jyed Jurreys oyl
9OUIS OUI] 9YDLD ® SB [ONS JIUN 9IUSISYOD [[eWS ' JO
[9AS] 9} UI AJUO POIRIJUSIUOD U99q 9ARY suiejjed Jul
-IeT[S JO UOTJRZI[IIN d1[} UO SOYIILISI JSOUI ‘MOU [[1],
‘soaTjTiunId UOIIROO[[R AToWOW [R1dads
Suisn ut ueping siewwrerdord sermbear 31 ‘Aouaieyod
[PA9]-109[q0 smoe eiseyg S[IYA\ “Ioded STyl ur pojuos
-01d aanjeoy saridepe oyj) opnour jou op L9yl eyl 08
‘“ynej oFed ' 3utsnes JNOYIIM PROYIDAO SULNIOYD oY) Ul
-ONpal Ul oIe sisetojul Jolew IOy} ‘IS "SINSd Poseq
-o%ed ur [019u0d $s900€ ureid ouy Sunryuewe[dwl 10j SIS
-eq oo a1y quesexd [p1leIseyg pue [97]S-prezzig
"1000301d paIeys 9)1IM 973 JO
9SO} 07 IR[IWIS o1€ 109fe pue yoeoidde si] -uoryeuriof
-ut Surddew ut seSueyd o) 1N BIeP J0U SI SOPOU Juower
porededod uoryewiojul oy} ‘ynsal e sy -jutod aseolod
oY) ' elep poIeys-A[os[e] soJeli3IW PUR oW} UNI Ul JUI
-Teys os[e] $19919P [8]7020301d SUMO-I0ILIM ST, "JIP oY)
Sui[purey Ul PeSYISAO 91} puR usping siowmrersord a1y
ut o1 sdeotpueyq s1] ‘sopou uowre pojededold o1e suoly
-10d £311p oy} A[uo seojuetend uimj) s)1 pue oaged e jo
(prp)uostredwiod piom-£q-pIom 9YJ, ‘UOTIRIIIGIR SIT I0]
o[qisuodseu st Jewrmesdold oY) osneIaq UOT)RZIUOIYIUAS
Aure SutueAILIUT INOYIIM 9Fed SUIES B UO 9ILIM O} SPRIIY)
o[duynu smofre [11]{000%01d poreYS-9IIM BT,
‘s1o[idurod uo Aouspuadep o1y 09
onp Aj1arpdepe awl) UNl O] A7) ‘I0A0RIOJN ‘IoWUIRIS
-01d © 0} uaAId st AL)IqIsuodsal Jo 10] e 9ouls Jurmurelsd
-oxd jo oseo oy} 2oyLIORs £o7) ‘1oAeMOY ‘pasodord ussq
oney [0T][T] INSA poseq-uordar oy pue NSO poseq
-108[qo oty ‘yoeordde ATUO-oIeM)JOS ® UL JTUN 2OUSISY
-00 9z1s 9[qerreA 10 ureid-ouy e j10ddns 09 19pI0 U
‘uo1yRjUSUI
-o[dwt arempiey uo poeseq oIe £9Y) 9ouls NS Poseq
-oged 09 oarepeur 1o/pue ojqestiddeur ore soypeord
-de 9597} JO [[& ‘IOAOMOY "APNJS INO SB IOUURU IR[IUUIS
e Ul w)sAs Appnq o) pojdope oyoed oiqeisnlpe oyfJ,
‘[9]eyoen oqegsnlpe o1y pue [g1]uoryeziurrido juowosed
'IRp O} ‘[FJ]000301d wOIYRpIRAUT TeTrRd OT) PUNOY
oq wed Ajremueid jo wojqoid oy} dAJos 09 soyoeoid
-de TeIoAss ‘s[000701d 90ULIOYOD 9YIBD JO ®SIC 9} U]

NIOM POIRRY g

dps-dn¢g Jo 9ourwroyrad o)
JO 9T uryimm ssof oy} sdeey 1s-J)g ‘I0A0MOY "IoJeA\
pue T JO Sosed 1SIOM O} Ul SSO[o[} JOA0D 0} INOUs
qou st ured ooururiojrod ‘Ajpjeunjiojur) -sured sourw
-10510d £q ueppIy oq ued ssof oy} ‘suonedrdde 1oy)0
uy ‘uorjestidde A1oae ur ueddey Arur sesed Yong ‘suIo)
-yed £109e13TIn JO SUO1I09I0P Suoim 10 Ajpeusd o) £q
posned oIe $109[J0 9ATIRIOU YT, "I9JRA\ PUR ()T IOJ $100]
-Jo aa1pe3ou SMOUS 1 S[IYM % ez 6T 01dn suoryeordde
9sowt 10j dps-gJO¢g surede sdnpeods sesoryoe 3] “dps
-dD g Jo eoueuriopred oY) ym paredurod uoym 1s-JOHg
Ul UOT)RPI[RAUT-J[9S) JO 109[0 9} SMOYS ¢ d[(r],

‘suoryerodo 9j0wel JO PQUINU JOMO) 10 OU
oxjoAur Aoy} oouls sured ooueuriojred JO 92IN0S Idyjoue
axe suorprod pasesIoul 8say], "%egIF1g 01dn sesearour
10U} ut surejjyed A[uo-pear jo uorprod o) pue ‘ATeAr)
-00dsa1 9 z6E pue % ceg 01dn eseaour (g JIN Ut sutojyed
Jownsuod-1eonpold pue suisjyed oyeatid jo suorniod oty
‘sodwrexe 10 ‘suloljed PoXIW PUE [BIOUSS FUISLIINOP
o[IyM surd)jed IowINSuod-100npord pur Auo-pesl ‘9rea
-11d Jo suorjrod oy sesearout dps-g0Hg ‘uoryeordde yoeo
10J saeq jo ired e Jo uosuredwiod oY) U "93Aq ZTC ST 9ZIS
oded eseq o) uweym dps-gHg pue [0d0301d oseq o
IO WISTURYOSW UOII0999P 1IN0 AQ Po1oejep surojyed Jur
-Ieys JO SUOTINLIISIP oY) $ojeIIsn[l § oIndrg -oded e
A013s9p 10 93e0ID suorlowold pue SUOIIOWEP 9OUIS SUIS)
-yed 3urreys jo uomNLIISIP oY} d8ueyd Aewr sqHg

"WYY} JO UOTIRZI[IIN DAISUDIXS 910U JO A[IQISL] oY)
Mmoys pue sureljed JULIRYs SUDNPOIIUL JO 1000 oY) UO
STD0J oM ‘UOT}I9s ST U] ‘uorjestjdde jsow 10j oW} UOTY
-NOOX0 97} 9oNPal sutvljed Furreys SUIZI[IN SUOTYRZITUT)
-do 1000701d o1p1 ‘suordes snotavad oyl Ul POSSNISIP SY

suiejjeJ Sulreys jo uonezinn ¢y

“posroaduut oq ued
oourewriojrod oy} pue pozrwndo I9YNNJ oq ued sJNg
9ADI[0q 9\ "08®IDA0D POO3 UTR}qO 07 I9PIO Ul oFed aseq
® Jo oz1s Aue 10 uonyeordde Aue 10y sgHE 9y} dn ouny
01 AI1 j0u PIp 9p\ ‘URSD() I0J vouruLIONRd 91s9q O}
sop1aoid o8ed se1dq 9 oY) oI0yMm [020301d dseq oy} Jo
9% UTy9IM ST 9ourRULIOJIed 9Y) ‘URad() J0J SUIT) UOTINIDXD
91} donpal jouued 1s-JHg YsnoyJ, ‘suoryesrdde jsowr
10} [020301d oseq o1 ey} souewIojrod 19199q soplaoid

120- | 117 | 042 | 92°¢ [11°0-] #T°0 | (%)eseD 1siom
¥6'0 | €6°0T | €2°6T | 29°6T | ¢e'e | ce'e | (%)oseD 1sog
120 | 8¢L | €811 | 61°0T | 601 | 280 | (%) d8eieay

([rerem [1ousg [uesdo [aedn] N1 [Ldd] ase) I
dnpsadg ur uonepIRAUL-J[8S JO 199H € SIqeL
sureljed Surreysg jo uomnquisyy Sig

paxiwm [eloush @ AlorIbiw] D400 Ol akALd @

2 8 o p&p&
.mw_b_.wm.w_b_w_b_p .m.&
mmM_m_wmemmme_ o
T 55882230
%0
%02
%0%
%09
%08

%00T

LEE et al: BUDDY COHERENCE: AN ADAPTIVE GRANULARITY HANDLING SCHEME FOR PAGE-BASED DSM

sults show that the sharing patterns can be utilized
even in a large page. A pattern may change frequently
and may show different shape from its inherent behav-
ior. Our detection mechanism traces such changes and
determines the most probable type of sharing pattern
that is the most probable for a given page.

6. Conclusion

We have presented a family of buddy coherence pro-
tocols for page-based DSM systems, where multiple
page sizes can be adaptively supported during run time
according to the behavior of applications. We sug-
gest a sharing pattern detection mechanism that can
work well even when a large coherence unit is used.
Simulation results show that our protocols are outper-
form a write-invalidate protocol for most applications
even when the write-invalidate protocol uses a small-
sized coherence unit. The execution time can be re-
duced by upto 41% when compared with the case of
base protocol using a 64 byte base page. Selective de-
motion/promotion and self-invalidation for migratorily-
shared pages successfully cut down overhead resulting
in better performance.

BCPs and the sharing pattern detection mecha-
nism can be further tuned up. We expect BCPs can
achieve better performance if the conditions for a de-
motion and a promotion are elaborated. The detection
mechanism can also be refined. We expect it can be ex-
tensively utilized in not only BCPs but any other pro-
tocol. The effect on memory models and other existing
techniques should also be studied. We are interested es-
pecially in how BCPs affect the write-shared protocol.
BCPs are expected to partially provide a similar effect
to the write-shared protocol without any annotation by
a programier.

In addition to performance gains, our idea and ap-
proach are simple enough to be implemented easily in
the existing environments. Also our scheme is tolera-
ble to a mistake in selecting the right size for a DSM
system.

References

[1] B. N. Bershad, M. J. Zekauskas and W. A. Sawdon, ”Mid-
way : distributed shared memory system,” Proceedings of
the IEEE CompCon, pp.528-537, February 1993.

[2] J. K. Bennett, J. B. Carter and W. Zwaenepoel, ” Adaptive
software cache management for distributed shared memory
architectures,” Proceedings of the 17th ISCA, pp.125-135,
May 1990.

[3] J. B. Carter, J. K. Bennett and W. Zwaenepoel, ”Tech-
niques for reducing consistent-related communication in dis-
tributed shared memory system,” ACM Transactions on
Computer Systems Vol.13 No.3, pp.205-243, August 1995.

[4] Y. S. Chen and M. Dubois, ”Cache Protocols with partial
block invalidations,” Proceedings of the 7th International
Parallel Processing Symposium, pp.16-23, April 1993.

[5] A.L. Cox and R. J. Fowler, ” Adaptive cache coherency for

(10]

(11]

(15]

(16]

(18]

(19]

(20]

(21]

detecting migratory shared data,” Proceedings of the 20th
ISCA, pp.98-108, May 1993.
C. Dubnicki and T. J. LeBlanc, ” Adjustable block size co-
herent caches,” Proceedings of the 19th ISCA, pp.170-180,
May 1992.
S. J. Eggers and R. H. Katz, ”The effect of sharing on the
caches and bus performance of parallel programs,” Proceed-
ings of ASPLOS III, pp.257-270, April 1989.
V.W. Freeh, D. K. Lowenthal and G. R. Andrews, ”Dis-
tributed filaments: efficient fine-grain parallelism on a clus-
ter of workstations,” Proceedings of the First Symposium
on Operating Systems Design and Implementation, pp.201-
212, November 1994.
L. Iftode, J. P. Singh and K. Li, ”Understanding application
performance on shared virtual memory systems,” Proceed-
ings of the 23rd ISCA, pp.122-133, May 1996.
K. L. Johnson, M . F. Kaashoek and D. A. Wallach, ”CLR :
high-performance all-software distributed shared memory,”
Proceedings of the 15th ACM Symposium on Operating Sys-
tem Principles, pp.213-228, December 1995.
P. Keleher, A. L. Cox, S. Dwarkadas and W. Zwaenepoel,
?TreadMarks : distributed shared memory on standard
workstations and operating systems,” Proceedings of Win-
ter USENIX Conference, pp.115-132, January 1994.
D. E. Knuth, The Art of Computer Programming Vol.1
Fundamental Algorithms 2nd Edition, pp.435-454,
Addison-Wesley, 1969.
K. Li, ”Shared virtual memory on loosely coupled multi-
processors,” PhD thesis, Yale University, September 1986.
D. J. Scales, K. Gharachorloo and C. A. Thekkath, ”Shasta
a low overhead, software-only approach for supporting
fine-grain shared memory,” Proceedings of ASPLOS VII,
pp.174-185, October 1996.
D. J. Scales and K. Gharachorloo, ”Toward Transparent
and Efficient Software Distributed Shared Memory,” Pro-
ceedings of the 16th ACM Symposium on Operating System
Principles, Oct ober 1997.
I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J.
R. Larus and D. A. Wood, ”Fine-grain access control for
distributed shared memory,” Proceedings of ASPLOS VI,
pp.297-306, October 1994.
P. Stenstrom, M. Brorsson and L. Sandberg, ” An adaptive
cache coherence protocol optimized for migratory sharing,”
Proceedings of the 20th ISCA, pp.109-118, May 1993.
M. Talluri, M. D. Hill and Y. A. Khalidi, ”A new page ta-
ble for 64-bit address spaces,” Proceedings of the 15th ACM
SOSP, pp.184-200, December 1995.
J. Torrellas, M. S. Lam and J. L. Hennessy, ”Shared data
placement optimizations to reduce multiprocessor cache
miss rates,” Proceedings of the 3rd International Confer-
ence on Parallel Processing, pp.266-270, 1990.
J. E. Veenstra and R. J. Fowler, ”’MINT Tutorial and User
Manual,” Technical Report 452 (Revised Ed.), University
of Rochester, June 1994.
S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta,
”The SPLASH-2 programs : characterization and method-
ological considerations,” Proceedings of the 22nd ISCA,
pp-24-36, May 1995.

Sangbum Lee received the B.S. and
M.S. degrees in computer science from

10

Seoul National University, Seoul, Korea,
in 1984 and 1986, respectively. Since
1988 he has been a technical staff in
the Korea Securities Computer Corpora-
tion(KOSCOM). He is currently working
towards the Ph.D. degree in computer
science at the Korea Advanced Insti-
tute of Science and Technology(KAIST)
since 1994 in the educational program of
KOSCOM. His research interests include operating systems and
computer architectures.

Inbum Jung received the B.S. de-
grees in electronics engineering from Ko-
rea University, in 1985, and the M.S. de-
gree in information & communication en-
gineering from KAIST, in 1994. He is cur-
rently working towards the Ph.D degree
in computer science from KAIST. From
1984 to 1994, he was with the Computer
System Division of Samsung Electronics
Co., Ltd., Korea. His research interests
include operating systems, computer ar-
chitectures, parallel processing and multimedia systems.

Joonwon Lee received the B.S. de-
gree from Seoul National University, in
1983 and the M.S. and Ph.D. degrees from
the College of Computing, Georgia Insti-
tute of Technology, in 1990 and 1991, re-
spectively. From 1983 to 1986, he was
with Yugong Ltd., and from 1991 to 1992,
he was with IBM research centers where
he was involved in developing a scalable
shared memory multiprocessor. He is cur-
rently an associated professor at KAIST.
He has initiated several research projects in the area of operating
systems and he was a recipient of Windows NT source code. His
research interests include operating systems, computer architec-
tures and parallel processing.

IEICE TRANS. , VOL. E00-A, NO. 1 JANUARY 1998

