
A scheduling policy for preserving cache locality in a
multiprogrammed system q

Inbum Jung *, Jongwoong Hyun, Joonwon Lee

Department of Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Kusong-Dong,

Yusong-Ku, Taejon 305-701 South Korea

Received 17 December 1999; received in revised form 13 March 2000; accepted 20 May 2000

Abstract

In a multiprogrammed system, when the operating system switches contexts, in addition to the cost for handling the

processes being swapped out and in, the cache performance of processors also can be a�ected. If frequent context

switching replaces the data loaded into cache memory before they are completely reused, the programs su�er from

cache misses due to the damage in cache locality. In particular, for the programs with good cache locality, such as

blocked programs, a scheduling mechanism of keeping cache locality against context switching is essential to achieve

good processor utilization. To solve this requirement, we propose a preemption-safe policy to exploit the cache locality

of blocked programs in a multiprogrammed system. The proposed policy delays context switching until a block is fully

reused, but also compensates for the monopolized processor time on processor scheduling mechanisms. Our simulation

results show that in a situation, where blocked programs are run on multiprogrammed shared-memory multiprocessors,

the proposed policy improves the performance of these programs due to a decrease in cache misses. In such situations, it

also has a bene®cial impact on the overall system performance due to the enhanced processor utilization. Ó 2000

Published by Elsevier Science B.V. All rights reserved.

Keywords: Blocked algorithm; Multiprogrammed system; Cache locality; Context switching

1. Introduction

Parallel programs are often run on shared-memory multiprocessors due to usable programming envi-
ronments and low-cost high performance systems. In these systems, each processor accesses memory
locations via its cache memory to fetch the data. Cache memory reduces the speed di�erence between the
fast processor and the slow main memory by holding regions of recently referenced main memory. Thus,
cache misses incur memory access latencies in retrieving the corresponding data from the main memory.
During this penalty period, processors must stall until the data arrive.

Cache performance depends on the locality of references. If the sequence of addresses referenced by
programs cannot all be stored in the cache, cache misses occur. It is neither possible to build a cache that is

www.elsevier.com/locate/sysarc

Journal of Systems Architecture 46 (2000) 1191±1204

q This work was supported in part by National Research Laboratory Program funded by Ministry of Science and Technology and

university S/W research center program by Ministry of Information and Communication, Republic of Korea.
* Corresponding author.

E-mail address: jib@calab.kaist.ac.kr (I. Jung).

1383-7621/00/$ - see front matter Ó 2000 Published by Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 3 - 7 6 2 1 (0 0) 0 0 0 2 0 - 5

large enough to hold the working sets of all programs, nor is it possible to code all programs to avoid all
cache misses. However, several optimization techniques based on small source-code changes are used for
improving cache performance [1±4]. A blocked algorithm is a well-known optimization technique to reduce
cache misses via improved temporal locality in programs. This algorithm operates on submatrices or blocks
matched with the processor's cache size instead of operating on entire rows or columns of an array. Thus,
this algorithm maximizes reuse of the data loaded into the cache before the data are replaced.

When programs are run on a multiprogrammed system, multiple programs must share each processor.
In such environments, an operating system performs the context switching, since many programs may be
executed simultaneously. When using multiprogramming, in addition to the overhead of context switching
between the multiple processes, the frequent context switching itself can a�ect process cache behavior. After
a context switch, a process may be rescheduled on another processor, without the cache data it had loaded
into the cache of the previous processor. Even if the process is rescheduled onto the same processor, in-
tervening processes may have overwritten some or all of the cache data.

In particular, when programs exploit the blocked algorithm to improve cache locality in a multipro-
grammed system, the blocks loaded into the cache memory can be polluted between context switches. Thus,
the blocked algorithm su�ers from the damage in cache locality. To address this problem, we propose a
preemption-safe policy to exploit the cache locality of blocked programs in a multiprogrammed system.
The proposed policy delays context switching until only a block is fully reused in the program. However,
since the delayed context switching can a�ect the running of other programs waiting on a run queue, their
waiting time should be compensated. Thus, the proposed policy compensates the waiting time of other
programs by subtracting any extra time blocked programs received from their next quantum. This pro-
cedure ensures that the characteristic of a blocked program itself can be utilized in a multiprogramming
environment without greatly a�ecting the running of other programs. Our simulation results show that in a
situation where blocked programs are run on multiprogrammed shared-memory multiprocessors, the
proposed policy improves the performance of these programs due to a decrease in cache misses. In such
situations, it also has a bene®cial impact on the overall system performance by improving the processor
utilization of other programs executed at the same time.

The remainder of the paper is organized as follows. Section 2 explains a blocked algorithm. Section 3
proposes a preemption-safe policy. Section 4 presents the simulation environment used in this study. In
Section 5, we measure the performance of a preemption-safe policy on multiprogrammed shared-memory
multiprocessors. Finally, related work is presented in Section 6 and we conclude in Section 7.

2. Blocked algorithm

For some scienti®c programs, when accessing entire rows or columns of large arrays in every iteration of
the loop, the cache misses due to limited cache capacity can severely hurt performance. Example 1 is a naive
matrix multiplication for matrices of size N � N in C programming language. To produce the matrix Z, the
matrix X is multiplied by the matrix Y. The register variable r is also used to reduce memory accesses.

Example 1. A naive matrix multiplication in C language
for�i � 0; i < N ; i���f/* parallelized location */

for�j � 0; j < N ; j���f
r � X �i��j�; /* register allocated */
for �k � 0; k < N ; k ���

Z�i��k�� � r � Y �j��k�;
g

g

1192 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

Since this program operates on large data elements and performs identical processing on data, it is
parallelized by assigning data elements to processors at the outmost loop (i.e., line 1) according to the grain
size. The grain size means the fraction of matrix Z classi®ed as coarse, medium, or ®ne, depending on the
computation amount involved.

Fig. 1 shows that four processors are used for parallel processing with the coarsest grain size (i.e., N=4).
In particular, the shaded elements of matrices illustrate the fractions being accessed by processor 1. From
Example 1, the shaded elements of matrix Z are reused N times each time in which the data are brought. On
the other hand, all elements of matrix Y are reused N=4 times corresponding to the grain size chosen. From
this ®gure, we know that if the cache size of a processor is not large enough to hold at least N � N matrix,
the data of matrix Y would have been displaced before reuse. If the cache cannot hold even one row of the
matrix Z, then the data of matrix Z in the cache cannot be reused. Thus, in the worst case, 2N 3 � N 2 words
of data should be read from memory in N 3 iterations. The high miss rate on the reuse can signi®cantly slow
down the system due to the increased memory fetches to numerical operations.

To avoid this phenomenon, a blocked algorithm can be exploited for some scienti®c applications [1,3].
The blocked algorithm ensures that the elements being reused can ®t in the cache, since the original source
code is changed to perform on only submatrices of size B, instead of operating on individual matrix entries.
Example2 is a blocked matrix multiplication code.

Example 2. A blocked matrix multiplication in C language
for�kk � 0; kk < N ; kk� � B�f

for�jj � 0; jj < N ; jj� � B�f
for�i � 0; i < N ; i���f

for�k � kk; k < min�kk � B; N�; k ���f
r � X �i��k�; /* register allocated */
for�j � jj; j < min�jj� B; N�; j���

Z�i��j�� � r � Y �k��j�;
g

g
g

g

At line 7 of this blocked program, we know that if a block size B is chosen so that a B� B submatrix of Y
and a row of length B of Z can ®t in the cache memory, both Y and Z are reused B times each time in which
the data are brought. Thus, the total memory words accessed are 2N 3=B� N 2 if there is no address in-
terference in the cache. To parallelize this blocked program, a block size B is used as a grain size for parallel
processing. Thus, B� B blocks in matrix Y are assigned to each processor between line 1 and line 2. Fig. 2
shows a snapshot of the accesses to three matrices when four processors are used for parallel processing.

Matrix YMatrix XMatrix Z

Pi denotes the processor labeled i.

 is a matrix size.

P1 P1

P2

P3

P4

N/4

P2

P3

P4

P1 P2 P3 P4
N

N

Fig. 1. Memory access patterns of a native matrix multiplication program.

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1193

From this ®gure, we know that each processor accesses the ®xed locations in just two matrices Y and Z.
Since these locations of two matrices Y and Z are reused B times within the iterations of loop, they cause
good cache locality in this blocked program. On the other hand, since all elements of matrix X are accessed
once during the overall execution time, they do not have a great impacted on cache performance.

3. Preemption-safe policy

In the blocked program using B� B blocks, since the blocks loaded into a cache memory are reused B
times, the number of memory references is signi®cantly reduced. However, when run on a multipro-
grammed system, the cache locality attributed to these reuses cannot be preserved, since many programs
may be executed simultaneously, and processor must be shared among multiple programs. In such envi-
ronments, the frequent context switching can a�ect program cache behavior. If intervening programs wipe
out a block of the blocked program before it is not fully reused, cache performance degrades due to the
block displaced from the cache.

To address this problem, we propose a preemption-safe policy to keep the advantage of the blocked
algorithm even in a multiprogramming environment. The preemption-safe policy delays the context
switching by the kernel scheduler per quantum until only a block of the blocked program is completely
reused within a program. Thus, the proposed policy provides blocked programs with safe execution since
they are not preempted during the computation of a block.

To apply the preemption-safe policy in a multiprogrammed system, the operating system uses two extra
variables per process table (i.e., context table). One is used for denoting the preemptable or unpreemptable
state of a process. Another one is used for representing the delayed period of context switching. Besides the
support of an operating system, blocked programs are also modi®ed so that they inform the operating
system of a start and end time of the computation for a block.

Fig. 3 shows the control ¯ows between a blocked program (i.e., blocked matrix multiplication) and an
operating system in situations where the preemption-safe policy is used in a multiprogramming system.
Before the computation for a block is started at line 3, the blocked program sends a signal to the operating
system to request that it should not be preempted. The operating system accepts this request and sets the
state variable of context structure to unpreemptable. The kernel scheduler does not swap out the processes
with the unpreemptable state until their state variables change to preemptable. When the computation for a
block is ®nished at line 11, the program also generates a signal to withdraw its unpreemptable request.

At this time, the operating system sets the state variable to preemptable, and records the unpreempted
period to the delay_time variable and performs the context switching immediately for waited other pro-
grams. Thus, the value of the delay_time variable is processor time preused by the blocked program. This
time should be compensated for guaranteeing the fair processor usage among all programs running
together.

Matrix YMatrix XMatrix Z

Pi denotes the processor labeled i.

N is a matrix size.

P1 P1

P2

P3

P4

N/4

P2

P3

P4

P1 P2 P3 P4N

Fig. 2. Memory access patterns of a blocked matrix multiplication program.

1194 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

Fig. 4 shows the operations in a run queue, when three processes are run under the multiprogrammed
system supported by a preemption-safe policy. A kernel scheduler assigns a process to a processor in a
round-robin fashion with a quantum length. The term Q denotes a quantum size. In this ®gure, we assume
that the default value is 10 ms except the unpreempted period, and that process 2 is a blocked program. As
shown in Fig. 4(a), process 2 has an unpreemptable state and monopolizes a processor during the
delay_time, which is time to complete the computation for a block. After completing all the computation
for a block, process 2 should withdraw its unpreemptable right. Fig. 4(b) shows that process 2 is deviated
from the run queue after passing an unpreempted state. In such situations, the kernel scheduler schedules
only two processes (i.e., process 1 and process 3) under the round-robin manner with a default time
quantum. After an elapse of any extra time process 2 received, the kernel resets the delay_time variable, and
relocates process 2 into the run queue.

From the operation of the preemption-safe policy, we know that the delay of context switching can help
exploit the advantage of the blocked algorithm, and also that the compensation procedure for preused
processor time ensures the fair processor usage for all programs running simultaneously. However, using
the preemption-safe policy invokes additional signals to request to an operating system, and needs kernel
extensions as described above. In particular, since the excessive delay of context switching can a�ect other
programs' response times running together with blocked programs, the operating system should limit the
delayed period of context switching. If a process does not yield a processor within a small bounded period

Fig. 4. Examples of process scheduling in preemption-safe policy: (a) the delay of the context switching; (b) the compensation for

preused processor time.

Fig. 3. Control ¯ows of preemption-safe policy.

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1195

of time, the kernel should preempt it anyway. In Section 5, we will look at the impact of delayed context
switching in other programs running together with blocked programs.

4. Simulation environment

4.1. Simulator design and simulated platform

The simulation environment consists of a functional simulator that executes parallel programs and an
architectural simulator that models the shared-memory multiprocessors. We use an e�cient program-
driven simulator, MINT (Mips INTerpreter) [5] as a functional simulator. The MINT supplies a memory-
reference generator and simulation libraries. The memory reference generator executes a program on
several processors and sends an event to the architectural simulator.

We construct an architectural simulator based on a shared-memory multiprocessor with eight processors
and a shared-bus. Each processor is assumed to be a RISC processor with the same cache size and each
instruction is executed in a single cycle except the memory reference. We assume that cache structure is 128
Kbytes direct-mapped with 16 bytes cache line size. The simulated cache coherency protocol is the write
invalidation scheme [6]. On current microprocessors, the main memory access-time is about 80 ns, the clock
rate is 250 MHz (e.g., MIPS R10000, UltraSparc-II) and the system bus width is 128 bits. Table 1 shows the
timing values for the cache coherency protocol with the above microprocessors' parameters and 1 address
cycle and 1 bus operation cycle.

The standard MINT provides facilities to run only one parallel program at a time, with each process
permanently scheduled onto its own processor. Thus, we extended it to run multiple parallel programs at
the same time and linked it with our scheduling module. We employ the gang scheduling as our basic
scheduling module due to its easy implementation and less synchronization overhead [7]. In this basic
scheduling module, the number of runnable processes matches with the number of processors available, and
all runnable processes of a program are scheduled to run on the processors at the same time. When a time
slice ends, all running processes are preempted simultaneously, and all processes from a second program are
scheduled for the next time slice. When the preempted processes have their next time slice, they are re-
scheduled onto the same processor to exploit the cache data loaded into the cache of the previous processor.

To construct the kernel scheduler involving the preemption-safe policy described in Section 3, we added
its functional structure to the basic scheduling module. All processes invoked by the blocked program have
the unpreemptable state during the period for reusing the blocks allocated to each process. The simulated
kernel scheduler does not swap out the processes with the unpreemptable state until the state of all pro-
cesses changes to preemptable as described in Section 3.

In our simulation, a time slice (i.e., quantum) is assumed to be 10 ms. Also, the preemption-safe policy
needs additional signals between a program and an operating system as described in Section 3. Small [8]
reported that the time for treating a signal was 10.8 ls and the time for treating a context switch was
105.7 ls on a BSD UNIX operating system. From these considerations and the assumed clock rate (i.e., 250
MHz), the timing values used in process scheduling are shown in Table 2.

Table 1

Timing values for cache coherency protocol

Events (operations) Penalties (cycles)

A write on a shared line (invalidate signal) 3

A cache miss (the missed line is supplied by an another cache) 7

A cache miss (the missed line is supplied by the main memory) 22

1196 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

4.2. Benchmark programs

Table 3 shows six benchmark programs chosen for this study and their data sets used. All these programs
are written in C language and use the synchronization and sharing primitives provided by the SGI's parallel
macros package. The programs using the blocked algorithm are blocked matrix multiplication (B-MM) [9]
and blocked LU decomposition (B-LU) [11]. Other programs are bitonic sorting (BS) [9], MP3D [10], FFT
[11] and OCEAN [11]. In choosing the nonblocked programs, we tried to include the programs of various
characteristics. Their characteristics are already well-studied in many previous works [10,11]. In our sim-
ulation, since we are more interested in the performance of blocked programs under the preemption-safe
policy, the data sets of all programs shown in Table 3 are established so that two blocked programs are
®nished earlier than other programs.

To parallelize the computation, we use the coarsest grain size in all programs due to its less overhead for
handling a grain queue, which is driven by dividing the data size described in Table 3 by the number of
processors (i.e., eight processors we assumed in Section 4.1). Thus, the grain size of the B-MM program is a
32� 32 block and that of the B-LU program is a 64� 64 block, since blocked programs use the block size B
as a grain size for parallel processing. Table 4 provides the basic characteristics about the programs when
each program is run individually without interruption with eight processors.

Table 3

Benchmark programs and their data sets

Program Data sets

B-MM Three 256� 256 matrices

B-LU A 512� 512 matrix

BS 131,072 sorting keys

MP3D 20,000 molecules, a 16� 16� 16 array

FFT 524,288 input points

OCEAN a 512� 512 grid, 25 two-dimension arrays

Table 4

General statistics for benchmark programs

Program Total cycles ��108� Cache misses ��106�
B-MM 1.11 1.3

B-LU 3.77 6.4

BS 19.8 39.3

MP3D 20.1 8.1

FFT 13.4 25.3

OCEAN 16.1 6.2

Table 2

Timing values for process scheduling

Operations Time (cycles)

Quantum (10 ms) 2,500,000

Signal 2700

Context switch 26,425

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1197

5. Performance

To evaluate the performance of a preemption-safe policy in a multiprogrammed system, we also perform
blocked programs under a preemption policy that is based on the basic scheduling module described in
Section 4.1. This policy uses the round-robin manner with a typical default time quantum of 10 ms. On the
other hand, except for the unpreempted periods, the preemption-safe policy also uses a default time
quantum like the preemption policy.

We use the term programming level to represent the number of programs executed concurrently on a
multiprogrammed system. The higher the programming level used, the more the programs executed con-
currently and the more likely it is that programs may su�er from the cache pollution due to context
switching.

5.1. Single blocked program

5.1.1. B-MM program
Fig. 5(a) shows the performances of the B-MM program on both the preemption policy and the pre-

emption-safe policy. The range of programming levels is from level 2 to level 5. Table 5 shows the lists of
the programs used at each programming level. The performances under the preemption-safe policy are
better than those under the preemption policy in all programming levels. For example, the preemption-safe
policy shows the improved execution time of about 25.5% at level 2 and about 12.5% at level 5, when
compared to the preemption policy. These improvements result from a decrease in cache misses as shown in
Fig. 5(b). For example, cache misses decrease about 32% at level 2 and about 10.7% at level 5. From these
results, we know that the decrease in execution time by using the preemption-safe policy correlates perfectly
with the decrease in cache misses. However, in both policies, the higher the programming levels used, the
more the cache misses occur. The reason is that the amount of cache pollution between context switching
increases as more programs are run at the same time. However, the preemption-safe policy could prevent
only a B� B block from becoming the pollution due to context switching.

Fig. 5. B-MM program ± performance under various programming levels: (a) execution time of B-MM program; (b) cache misses of

B-MM program.

Table 5

Lists of programs running with a B-MM program

Programming levels Programs

Level 2 B-MM, FFT

Level 3 B-MM, FFT, BS

Level 4 B-MM, FFT, BS, OCEAN

Level 5 B-MM, FFT, BS, OCEAN, MP3D

1198 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

Fig. 6(a) shows the execution times of all programs running under programming levels 4 and 5 with the
preemption-safe policy. The results are normalized to the execution times under the preemption policy. This
®gure shows that other programs except the B-MM program are not greatly a�ected in preemption-safe
policy, despite arbitrary delays on the part of their execution. This result can be explained as follows. We
measured the number of delayed context switches when the B-MM program is located in the unpreemp-
table state for computing a block, since the excessive delay of context switching may increase the waiting
time of other programs. However, during the period of computing a block, the average number of delayed
context switches is three or four times (i.e., 30 or 40 ms). These delayed periods do not greatly a�ect the
execution of other programs. Moreover, after the B-MM program exploits an unpreemptable state, the
kernel scheduler does not permit the running of the B-MM program until its preused time is exhausted.
Thus, other programs can be provided with the fairness in terms of processor usage.

Fig. 6(b) shows the cache misses when programs are run under programming levels 4 and 5 using the
preemption-safe policy. These results are normalized to the cache misses under the preemption policy. As
shown in this ®gure, the preemption-safe policy produces the reduced cache misses in the B-MM program,
and also it decreases the cache misses of other programs very little. Little reduction in the cache misses of
other programs is due to the fact that after the B-MM program is done early, the remaining programs may
undergo the reduced cache pollution between their context switching.

5.1.2. B-LU program
Fig. 7 shows the execution times and cache misses of the B-LU program obtained for two policies across

a range of programming levels. Table 6 shows the lists of the programs used at each programming level.
Like the B-MM program, the B-LU program shows better performance in the preemption-safe policy

Fig. 6. Performance of B-MM program and other programs: (a) execution time of all programs; (b) number of cache misses on all

programs.

Fig. 7. B-LU program ± performance under various programming levels: (a) execution time of B-LU program; (b) cache misses of

B-LU program.

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1199

because the number of cache misses is decreased in all programming levels. For example, when running at
level 5, the preemption-safe policy shows about 13.3% improvement in execution time due to the reduced
cache misses of about 9.5%.

Fig. 8 shows the execution times and the cache misses when programs are run under at programming
levels 4 and 5 using the preemption-safe policy. These results are normalized to those obtained for the
preemption policy. The preemption-safe policy results in the better execution time due to the reduced cache
misses in all programs. Like in the B-MM program, we measured the number of delayed context switches
when the B-LU program is on the unpreemptable state. However, since the average number of delayed
context switches is four or ®ve times (i.e., 40 or 50 ms), these delays do not a�ect the execution of non-
blocked programs as shown in Fig. 8(a).

5.2. Multiple blocked programs

To measure the impact on the performance of preemption-safe policy when running multiple blocked
programs, we run two blocked programs concurrently at programming level 6. Fig. 9 shows the execution
times and cache misses of all programs including two blocked programs when they are run under the
preemption-safe policy. All results are normalized to those obtained for the preemption policy.

Fig. 9(a) shows that the preemption-safe policy improves not only the execution times of two blocked
programs but also those of other programs. However, the improving rates in blocked programs are lower
than those observed under programming level 4 or 5 shown in Figs. 6(a) and 8(a). The reason is that the
higher the programming level used, the more the data are displaced from the cache memory between
context switches. In particular, as the programming level is increased, the rate of cache data replacement in
the preemption policy is higher than that in the preemption-safe policy. Thus, more cache misses in the
preemption policy result in more execution time, and the normalized values are diminished as the pro-
gramming level is increased.

Fig. 8. Performance of B-LU program and other programs: (a) execution times of all programs; (b) cache misses of all programs.

Table 6

Lists of programs running with a B-LU program

Programming levels Programs

Level 2 B-LU, FFT

Level 3 B-LU, FFT, BS

Level 4 B-LU, FFT, BS, OCEAN

Level 5 B-LU, FFT, BS, OCEAN, MP3D

1200 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

As shown in Fig. 9(b), the preemption-safe policy results in the reduced cache misses even in nonblocked
programs. As explained in the above subsections, this result is because after two blocked programs are
®nished early, the remaining programs su�er less cache pollution between their context switching than when
six programs are run concurrently. Moreover, since the early completion of two blocked programs increases
other programs' processor usage, it also has a bene®cial impact on their execution time.

6. Related work

Previous research on blocking has been done on evaluating the performance of blocked algorithm [1,2].
Lam [1] experimented with a matrix multiplication using the blocked algorithm under the various cache
structures. This study calculated the optimal block size based on given cache parameters that could avoid
self-address interference. Lebeck [2] suggested a visualized tool called cache pro®ling (CPROF) that clas-
si®ed cache misses at the source line and data structure level. In particular, this study showed that blocking
technique can eliminate cache capacity misses by processing data in portions that ®t in the cache. However,
these previous studies about blocking technique did not involve in a multiprogramming environment
running several other parallel programs.

Several studies have analyzed the cache performance under a multiprogramming system [12±14]. In
particular, Mogul and Borg [14] experimented with the e�ect of context switches on cache performance in a
multiprogramming system. They classi®ed simulated programs as three types: a timesharing system with a
few intensive users, a compute-bound load with a couple of larger programs, a repetitive client±server
interaction program. According to the classi®ed types, they divided the causes of context switches into
system calls, page faults or scheduler and measured the costs of context switches for each program type on
the basis of the divided causes. As a result, this study reported that the cache-performance costs of a context
switch are greater than all other context-switch costs.

Fig. 9. Performance of programs on programming level 6: (a) execution times of all programs; (b) cache misses of all programs.

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1201

Several previous studies have been reported for the interaction between scheduling strategies and cache
performance of programs. To improve the cache utilization for a given scheduling policy, cache a�nity
scheduling has been introduced to exploit cache footprints [15±17]. Squillante [16] pointed out that the
e�ect of the cache a�nity scheduling depended on the program characteristics via an analytic model for
cache memory operations. On the other hand, Vaswani [17] reported that the processor a�nity had only a
weak in¯uence on the choice of scheduling discipline even for a multiprogramming system. These previous
studies for cache a�nity only focused on the footprints on the cache memory remaining after context
switching, they did not consider the preservation of cache locality in a multiprogramming system. When
using the previous cache a�nity scheduling, even if the process is rescheduled into the same processor,
intervening processes may have overwritten some or all of the cache data. However, our proposed
scheduling not only exploited the advantage of the cache a�nity scheduling based on the running of the
same processor, but also utilized the intrinsic locality of blocked programs through the limited delay of
context switching.

When using multiprogramming, besides the overhead of cache pollution, synchronization primitives can
substantially degrade the performance of parallel programs. If the processor that is to set the variable is
preempted, the processors that are running but waiting for the variable to be set will waste processor cycles.
Much previous work has been reported for operating system scheduling policies and synchronization
primitives [18±20]. In particular, Kontothanassis [20] investigated synchronization algorithms used to avoid
preempting processes with an active lock. When a process with a lock variable enters a critical section, it
requests the operating system not to preempt it until it leaves the critical section. This nonpreemption policy
for locking mechanisms allowed the system to avoid the useless work induced by other running processes
stalled while waiting for the lock variable occupied by a preempted process.

The blocked algorithm makes good cache locality for programs via source-code changes. If this locality
su�ers from context switching in a multiprogramming environment, the anticipated cache performance
cannot be obtained. In this paper, we proposed the preemption-safe policy to preserve blocked programs'
cache locality in a multiprogramming system. In the previous study, for e�ective synchronization algo-
rithms in a multiprogramming system, this nonpreemption policy was used to avoid the preemption of the
process with an active lock [20]. On the other hand, we used this policy to preserve the cache locality of
programs.

7. Conclusion

In this paper, we have considered the performance of the blocked algorithm on a multiprogrammed
system. The blocked algorithm improves cache performance by increasing the locality of memory refer-
ences. To apply the blocked algorithm, the existing programs are modi®ed to make the reused blocks, and
these reused blocks result in the enhanced cache locality. However, in a multiprogrammed system, the
blocks loaded into a cache memory can be polluted by the context switching. To address this phenomenon,
we proposed a preemption-safe policy to keep the advantage of a blocked algorithm even in a multipro-
grammed system. This proposed policy delayed context switching until the block loaded into a cache
memory was fully reused. Thus, this method gave blocked programs safe execution since they were not
preempted during the period of computing a block. Also, this method guaranteed the fair usage of pro-
cessor time via compensating the processor time preused by blocked programs. Simulation results showed
that the preemption-safe policy improved the performance of blocked programs due to the reduced cache
misses. In particular, since the delayed period of context switching was short, it did not a�ect other pro-
grams' response time. Moreover, since early ®nished blocked programs caused the less cache pollution and
the more processor utilization for the remaining programs, the overall system performance was also im-
proved. The preemption-safe policy needs the operating system's support and the program's modi®cation.

1202 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

However, for the programs with good cache locality, such as blocked programs, exploiting the preemption-
safe policy is worthwhile if the delayed period of context switching does not severely a�ected programs'
response time, because this policy can enhance the overall throughput for a given system.

Acknowledgements

This work was supported in part by National Research Laboratory Program funded by Ministry of
Science and Technology and university S/W research center program by Ministry of Information and
Communication, Republic of Korea.

References

[1] M.S. Lam, E.E. Rothberg, M.E. Wolf, The cache performance and optimizations of blocked algorithms, in: Proceedings of the

Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 1991, pp. 63±74.

[2] A.R. Lebeck, D.A. Wood, Cache pro®ling and the SPEC benchmarks: a case study, IEEE Computer 27 (10) (1994) 15±26.

[3] D.A. Patterson, J.L. Hennessy, Computer a Quantitative Approach, second ed., Morgan Kaufmann, Los Altos, CA, 1996.

[4] I. Jung, J. Lee, Techniques for improving the cache performance in parallel applications, Eleventh IASTED International

Conference on Parallel and Distributed Computing and Systems (PDCS'99), 1999, pp. 597±602.

[5] J.E. Veenstra, R.J. Fowler, MINT: a front end for e�cient simulation of shared-memory multiprocessors, in: Proceeding of

Second International Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

(MASCOTS), 1994, pp. 201±207.

[6] J. Archibald, J.-L. Baer, Cache coherence protocols: evaluation using a multiprocessors simulation model, ACM Transactions on

Computer Systems 4 (4) (1986) 273±298.

[7] J.K. Ousterhout, Scheduling techniques for concurrent systems, in: Proceedings of the Third International Conference on

Distributed Computing Systems, 1982, pp. 22±30.

[8] C. Small, M. Seltzer, Scheduler activations on BSD: sharing thread management between kernel and application, Technical

Report TR-31-95, Department of Computer Science, Harvard University, 1995.

[9] V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduction to Parallel Computing (Design and Analysis of Algorithms), The

Benjamin/Cummings, Menlo Park, CA, 1994.

[10] J.P. Singh, W.D. Weber, A. Gupta, SPLASH: stanford parallel applications for shared-memory, Computer Architecture News 20

(1) (1992) 5±44.

[11] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs: characterization and methodological

considerations, in: Proceedings of the 22nd Annual International Symposium on Computer Architecture, 1995, pp. 24±25.

[12] A. Agarwal, J. Hennessy, M. Horowitz, Cache performance of operating system and multiprogramming, ACM Transactions on

Computer Systems 6 (4) (1988) 393±431.

[13] C.B. Stunkel, W.K. Fuchs, TRAPEDS: producing traces for multicomputers via execution driven simulation, in: Proceedings of

ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, 1989, pp. 70±78.

[14] J.C. Mogul, A. Borg, The e�ect of context switches on cache performance, in: Proceedings of the Fourth International Conference

on Architectural Support for Programming Languages and Operating Systems, 1991, pp. 75±84.

[15] J. Torrellas, A. Tucker, A. Gupta, Evaluating the performance of cache-a�nity scheduling in shared-memory multiprocessors,

Journal of Parallel and Distributed Computing 24 (2) (1995) 139±151.

[16] M.S. Squillante, E.D. Lazowska, Using processor-cache a�nity information in shared-memory multiprocessor scheduling, IEEE

Transactions on Parallel and Distributed Systems 4 (2) (1993) 131±143.

[17] R. Vaswani, J. Zahorjan, The implication of cache a�nity on processor scheduling for multiprogrammed, shared-memory

multiprocessors, in: Proceedings of the 13th ACM Symposium on Operating System Principles, 1991, pp. 26±40.

[18] J. Zahorjan, E.D. Lazowska, D.L. Eager, Spinning versus blocking in parallel systems with uncertainty, in: Proceedings of the

International Seminar on Performance of Distributed and Parallel Systems, 1988, pp. 455±472.

[19] A. Tucker, A. Gupta, Process control and scheduling issues for multiprogrammed multiprocessors, in: Proceedings of the 12th

ACM Symposium on Operating System Principles, 1989, pp. 159±166.

[20] L.I. Kontothanassis, R.W. Wisniewski, M.L. Scott, Scheduler-conscious synchronization, ACM Transactions on Computer

Systems 15 (1) (1997) 3±40.

I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204 1203

Inbum Jung received the B.S. degree
in electronics engineering from Korea
University, in 1985, and the M.S.
degree in information communica-
tion engineering from Korea Ad-
vanced Institute of Science (KAIST),
in 1994. He is currently working to-
wards the Ph.D degree in computer
science from KAIST. From 1984 to
1995, he was with the Computer
System Division of Samsung Elec-
tronics, Korea. His research interests
include operating systems, computer

architectures, parallel processing, cluster computing and mul-
timedia systems.

Jongwoong Hyun received the B.S.
degree from Korea University, in 1986
and the M.S. degree in computer sci-
ence from Korea Advanced Institute
of Science and Technology (KAIST),
in 1998. He is currently a Ph.D student
working in the computer architecture
group at KAIST. From 1986 to 1998,
he was with Computer System Divi-
sion of Samsung Electronics Do., Ko-
rea. His research interests include
computer architecture, cluster com-
puting, and Web server.

Joonwon Lee received the B.S. degree
from Seoul National University, in
1983 and the M.S. and Ph.D. degrees
from the College of Computing,
Georgia Institute of Technology, in
1990 and 1991, respectively. From
1983 to 1986, he was with Yugong,
and from 1991 to 1992, he was with
IBM research centers where he was
involved in developing a scalable
shared-memory multiprocessors. He is
currently a faculty member at KAIST.
He was a recipient of Windows NT

source code. His research interests include operating systems,
computer architectures, parallel processing, cluster computing
and Web server.

1204 I. Jung et al. / Journal of Systems Architecture 46 (2000) 1191±1204

