
Multimed Tools Appl
DOI 10.1007/s11042-009-0421-6

Network-adaptive autonomic transcoding algorithm
for seamless streaming media service of mobile clients

Dongmahn Seo · Inbum Jung

© Springer Science + Business Media, LLC 2009

Abstract As a result of improvements in wireless communication technologies, a
multimedia data streaming service can now be provided for mobile clients. Since
mobile devices have low computing power and work on a low network bandwidth, a
transcoding technology is needed to adapt the original streaming media for mobile
environments. However, wireless networks have variable bandwidths depending on
the movement of clients and the communication distance from Access Point (AP).
These characteristics make it hard to support stable Quality of Service (QoS) streams
for mobile clients. In this paper, a target transcoding bit-rate decision algorithm
is proposed to provide stable QoS streams for mobile clients. In our experiments,
the proposed algorithm provides seamless streaming media services based on the
network adaptive bit rate control and reduces transmission failure.

Keywords Transcoding · Mobile client · Wireless · Network adaptive QoS ·
Streaming · Bit-rate

1 Introduction

Based on the recent significant growth of telecommunication, computer, and image
compression technologies, the streaming media service has been spotlighted in many
multimedia applications. In particular, the advances in wireless network technologies
have enabled streaming media service on mobile devices such as PDAs and cellular

This work was supported by the Korea Research Foundation Grant funded by the Korean
Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-D00424(I00901)).

D. Seo · I. Jung (B)
Dept. of Computer Engineering, Kangwon National University,
Chuncheon, Gangwon, South Korea
e-mail: ibjung@kangwon.ac.kr

D. Seo
e-mail: sarum@kangwon.ac.kr

Multimed Tools Appl

phones. Streaming media need larger and more complex data than the traditional
text and image data. Thus, a large network traffic bandwidth and high performance
computing ability are inevitably required to support the Quality of Service (QoS)
streams [6, 7, 17–19]. However, since wireless networks have low and unstable
bandwidth channels compared to wired networks, and many mobile devices have
limited CPU performance, transcoding technology is needed to adapt the originally
encoded media to the given mobile devices. The range of adaptations includes
changing the frame rates, bit rates, video sizes and compress format such as re-
encoding MPEG I, II media into MPEG IV [1, 17, 20]. Moreover, transcoding of
MPEG IV encoded media data is necessary to provide QoS guarantee streaming
server for mobile clients.

The transcoding system is usually composed of both the multimedia server with
the originally encoded media and the transcoding servers to perform the adaptation
to the given environment. The multimedia server retrieves the media and sends them
to the selected transcoding server. The transcoding server performs the transcoding
original media and also sustains the streaming service to the corresponding client.
In particular, a critical requirement for providing QoS for clients is to guarantee
streaming media quality consistently and without jittering phenomena.

However, mobile clients work in the wireless network environment, which is
unstable and has low bandwidth compared to wired network. Since the distance be-
tween mobile clients and an Access Point (AP) fluctuates according to the movement
of mobile clients, the available network bandwidth is not kept stable. Therefore,
it is hard to guarantee a stable QoS level and the continuity of media data in the
streaming service for mobile clients.

In this paper, the Network Adaptive Autonomic Transcoding Algorithm
(NAATA) is proposed to support streaming media service for mobile clients. The
proposed algorithm decides on target transcoding bit-rates in real-time according
to the wireless network state. Since it protects continuous transmission failures for
streaming media data, seamless and stable streaming media services are provided for
mobile clients.

The rest of this paper is organized as follows. Section 2 describes related work
for our research. In Section 3, the NAATA to achieve the seamless streaming media
service for mobile clients is proposed. In Section 4, the performance of the NAATA
is evaluated. Section 5 provides a conclusion for the research.

2 Related work

2.1 Transcoding systems

There have been several approaches for transcoding systems, including source based
static encoding system and static transcoding server systems [16, 17]. In the source
based static encoding system, the server stores the MPEG videos encoded by all
client grades. Due to the absence of on-line overhead for transcoding, this approach
has an advantage on the streaming service side. However, it is difficult to prepare
encoded videos that are adapted for all kinds of mobile clients. Also, the method has
the disadvantage of storing all encoded client grades to the same MPEG movies title.

Multimed Tools Appl

The static transcoding server system chooses the transcoding server closest to the
wireless base of the mobile client. This approach uses the initial state of the wireless
network at the point of client arrival. However, since wireless networks have variable
bandwidths, it is difficult to guarantee the QoS streams in real-time with this method.

2.2 Network-adaptive QoS guarantee methods

The internet does its best to transmit packets among hosts, but it does not provide
any guarantee. In attempting to solve this problem, several methods for streaming
media services that guarantee QoS have been studied. An adaptation method for
server transmission bit-rate based on packet loss information in Real-time Transport
Protocol Control Protocol (RTCP) and using classification of clients is proposed.
This protocol is applied in the streaming media service between a server and the
clients. Especially in the Video-On-Demand (VOD) system with a Variable Bit Rate
(VBR) environment, it is difficult to guarantee the adaptive bit-rate for QoS, because
a specific frame may take much larger bits than other frames. To address this issue,
the smooth bit-rate method was proposed in order to keep stable transmission rates
[3, 9]. Also previously proposed were the edge server strategy, packet transmission
interval and datagram size control strategy [3, 21]. These methods, however, guaran-
tee the QoS of streaming service with only the specific environment or only with some
of the streaming data. However, since they are not able to reflect the network state
in real-time, not only can real-time multimedia data processing not be supported, but
also, it is not possible to provide a streaming service in fixed low bandwidths.

In order to enable streaming solutions that can adapt to the network state
and/or to the receiver capabilities, systems often rely on network-adaptive media
coding algorithms, or adaptive decoding strategies [2]. These algorithms encode
and packetize the media information under a form that facilitates adaptation to
the network characteristics, expressed in terms of bandwidth variation or packet
loss. Such techniques include for example scalable encoding, efficient bitstream
packetization, error-resilient encoding, and dynamic changes of compressed data
units’ dependencies. However scalable encoding approach is quit greedy in terms of
computational complexity, which makes its application quite limited in practice. And
adaptive error protection is difficult to design in scenarios where the loss behavior
is hard to predict, or where the access bandwidth is quite heterogeneous among
clients [2].

Application-layer QoS control techniques are used to deal with dynamically vary-
ing network conditions that can lead to significant data rate variations or unexpected
packet losses [2]. Automatic Repeat reQuest (ARQ) systems use combinations of
time-outs and positive and negative acknowledgments to determine which packets
should be retransmitted. Forward error correction (FEC) means that redundancy is
added to the data so that the receiver can recover from losses or errors without any
further intervention from the sender. However ARQ may not be appropriate for
applications with very tight delay constraints, or in broadcast scenarios due to the
bandwidth explosion phenomenon that arises when the states of the receivers are
not synchronized [2].

Optimized packet scheduling at the application layer takes into account data
units’ dependencies and importance for the reconstruction of the media stream
at the receiver when performing transmission decisions for media packets [2, 5].

Multimed Tools Appl

Congestion control further helps in preventing packet loss and reducing delays by
carefully limiting the bandwidth available to the sender. TCP-friendly rate control
(TFRC) provides a lower variation of throughput over time relative to TCP, while
simultaneously allowing for fair sharing of the available bandwidth with competing
TCP flows [2, 4, 15]. The Datagram Congestion Control Protocol (DCCP) is UDP
to support congestion control [12]. However these methods consider only how to
control network packets. They do not reduce the amount of media data for steaming
service to clients. Since streaming media service has a constraint like a soft real time
service, media data should be arrived at client on time. Therefore media bit-rate
changing method is needed when networks are congested, because the amount of
media data for 1 s is media bit-rate.

2.3 Available network bandwidth-adaptive transcoding

On the wireless network, the network bandwidth between a mobile client and an AP
fluctuates according to the movement of a mobile client. In particular, the bandwidth
of wireless network decreases sharply when jamming or other network problem
occur, or when a mobile client is far from an AP. Legacy transcoding methods have
drawbacks insofar as they do not consider wireless network bandwidth fluctuations.
In order to solve this problem, available network bandwidth-based transcoding
systems were proposed [11, 16, 21].

2.3.1 Estimation of available network bandwidth

Initial Gap Increasing (IGI) and Packet Transmission Rate (PTR) [11, 21] are
algorithms for estimating the end-to-end available network bandwidth. Table 1
shows the pseudo-code for the IGI algorithm. The IGI algorithm sends packets to a
receiver to estimate the available network bandwidth. A sender increases the number
of packets continuously until the amount of received packets on the receiver side is

Table 1 Pseudo-code for the
IGI algorithm Algorithm IGI

{
/* initialization */
probe_num = PROBENUM;
packet_size = PACKETSIZE;
gB = GET_GB();
init_gap = gB / 2;
gap_step = gB / 8;
src_gap_sum = probe_num * init_gap;
dst_gap_sum = 0;

/* look for probing gap value at the turning point */
While(!GAP_EQUAL(dst_gap_sum, src_gap_sum)) {

init_gap += gap_step;
src_gap_sum = probe_num * init_gap;

SEND_PROBING_PACKETS(probe_num, packet_size, init_gap);
dst_gap_sum = GET_DST_GAPS();

}
/* compute the available bandwidth using IGI fomula */
inc_gap_sum = GET_INCREASED_GAPS();
c_bw = b_bw * inc_gap_sum / dst_gap_sum;
a_bw = b_bw - c_bw;

}

Multimed Tools Appl

Table 2 Pseudo-code for the
ANAT algorithm Algorithm ANAT

{
if (diff_sbyte - diff_rbyte > BIt_DIFF) {

bit_diff_cnt++;
} else {

bit_same_cnt++;
}

if(bit_diff_cnt >= BIT_DIFF_COUNT) {
if(initial state) {

bit-rate reduction;
} else if (max_bit_rate == min_bit_rate) {

bit-rate reduction;
} else {

bit-rate reduction;
}

} else if (bit_same_cnt >= BIT_SAME_COUNT) {
tmp = bit-rate to change;
if(tmp < max_bit_rate && tmp < init_bit_rate) {

bit-rate modification;
} else if(tmp >= inin_bit_rate) {

set bit-rate as init_bit_rate;
} else if(tmp >= max_bit_rate) {

set bit-rate as max_bit_rate;
tmpcnt++;
if(tmpcnt > threshold) {

max_bit_rate = init_bit_rate;
tmpcnt = 0;

}
}

}
}

NOT same as that of the sent packets on sender side. When both sides have the
different value, then the turning point has been achieved: the amount of sent packets
just before the turning point is the current available network bandwidth.

2.3.2 Available network bandwidth-adaptive transcoding algorithm

The network bandwidth-adaptive transcoding technology is based on the IGI algo-
rithm. As mentioned in the above subsection, this algorithm estimates the available
network bandwidth. Table 2 shows the Available Network Adaptive Transcoding
(ANAT) algorithm, which controls the transcoding bit-rate according to the avail-
able network bandwidth that is estimated by the IGI algorithm. Since the ANAT
algorithm decides the target transcoding bit-rate by comparing the transcoding bit-
rate with the available network bandwidth, it controls the bit-rate of streaming media
in real-time.

3 The Network Adaptive Autonomic Transcoding Algorithm (NAATA)

Based on the estimation of available network bandwidth in real-time, the ANAT
algorithm provides a seamless streaming media service for mobile clients with
changing transcoding bit-rates. However the wireless network works on a variable
and low network bandwidth. Thus, the ANAT algorithm causes much overhead in
order to estimate the available network bandwidth. To address this problem, we

Multimed Tools Appl

propose the NAATA to provide seamless, low overhead streaming media service
to mobile clients.

As shown in Fig. 1, the Experimental System for the NAATA is composed of
the head-end server and the transcoding server. The head-end server receives user
requests and controls the transcoding server. The transcoding server transcodes
media data and provides streaming media services.

The transcoding server is composed a streaming module, a transcoding module
and a NAATA module. The NAATA module checks transmission failures and
decides on a transcoding target bit-rate for a corresponding mobile client. The
transcoding target bit-rate is sent to the transcoding module. The transcoding module
reads media data from storage devices and transcodes media data according to
the transcoding target bit-rate. After that, it sends transcoded media data to the
streaming module. The streaming module transmits the received transcoded media
data to a client.

The NAATA uses the Additive Increase, Multiplicative Decrease (AIMD), which
avoids continuous transmission failures in Transmission Control Protocol (TCP).
This algorithm controls the transcoding bit-rate autonomically when a transmission
failure occurs between a server and a client. The NAATA compares the number of
transmitted packets on a server with the number of received packets on a client. If the
number of received packets is below the threshold value, the NAATA changes the
transcoding bit-rate. Therefore, although the wireless network bandwidth is varied,
the NAATA provides a seamless streaming media service.

Fig. 1 The NAATA concept
using the AIMD

Multimed Tools Appl

3.1 The AIMD congestion control algorithm in TCP

The AIMD is a part of the congestion control algorithm in TCP [10, 13]. When
packet losses occur, a transmitter reduces the send rate exponentially. After that,
the transmitter increases the send rate linearly. Since other TCP connections in the
same congested router also suffer from the packet loss, these connections decrease
their transmission rate by reducing the size of congestion window. As a result, the
load of the congested router can be decreased by senders.

3.2 Characteristics of the NAATA

3.2.1 Operating behavior

To reflect media data characteristics, the NAATA is implemented with the modified
AIMD. The NAATA checks the amount of transmitted/received data in each
server/client and determines transmission failure. It checks the amount of transmis-
sion media data periodically: if the difference between the data received by the client
and the data transmitted by the server is bigger than the threshold, the NAATA
determines that a transmission problem has occurred on the network. The threshold
value can be decided on operating time. When the threshold value is getting bigger,
a possibility of transmission failure detection is getting lower. If the threshold value
is too big, transmission failures are not detected. If 0, every transmission failures are
detected. In this paper, 0 is used for the threshold value.

If a transmission failure is detected, the NAATA reduces the media data to
transmit as half of the current streaming bit-rate. It uses the fast recovery method
of the AIMD. If a transmission failure is not detected, the NAATA recovers the
bit-rate linearly by using the slow start method. Until the streaming media bit-rate
reaches the initial bit-rate, the streaming service is sustained at a level between the
maximum service available bit-rate and the minimum service available bit-rate.

Figure 2 shows an applied example of the NAATA. The x axis indicates the
timeline of user requests; the y axis shows streaming bit-rates. In this example, a
user request bit-rate is 200 Kbps. Thus, the initial bit-rate of the NAATA is also
200 Kbps. The maximum and minimum bit-rates are upper and lower bounds of the

Fig. 2 Activities in the
NAATA

F I

150

200
A G

F I

100

150

B E

H

D

g
B

it
-r

at
e

50

B

C

E

St
re

am
in

0

1 21 41 61 81 101 121 141 161 181 201 221

Transmission failure

Time (sec)

Multimed Tools Appl

target transcoding bit-rate in the current stage as decided by the current state of the
network. Point A of Fig. 2 is the point at which the first transmission failure is found.
After the failure, the streaming bit-rate is set to 100 Kbps. It is half of the maximum
bit-rate of 200 Kbps. After the streaming bit-rate is changed, the recovery of the bit-
rate may not be accepted immediately. From this point, the maximum bit-rate and
the minimum bit-rate are both set to 100 Kbps.

Point B of Fig. 2 shows what happens in the case of a continuous transmission
failure. In this case, the streaming bit-rate is changed to 50 Kbps. It is half of the
minimum bit-rate of 100 Kbps. Subsequently, the minimum bit-rate is set with the
streaming media bit-rate at 50 Kbps.

Point C in Fig. 2 represents the point at which no transmission failure occurs after
the reduction of service bit-rate, for a period of time longer than the pre-defined
threshold time. At point C, the streaming bit-rate is increased. If the bit-rate reaches
100 Kbps (Point D), the previous transmission failure position, it is necessary to
watch and wait to see whether another transmission failure will occur at the previous
transmission failure bandwidth. For the reason, the streaming media bit-rate is held
and kept, the minimum bit-rate is set with the maximum bit-rate at 100 Kbps and the
maximum bit-rate is set with the initial bit-rate at 200 Kbps.

Point E one can see that, after the service bit-rate was held, no transmission failure
occurred that lasted for a longer period of time than the pre-defined threshold time.
At Point E, the streaming bit-rate is increased. When the bit-rate reaches the initial
bit-rate of 200 Kbps (Point F), it is fixed as the initial bit-rate of 200 Kbps.

The failure of Point G differs from that of Point A and B. In the case of G, since
the maximum bit-rate is the current streaming bit-rate of 200 Kbps, and since the
minimum bit-rate is 100 Kbps, the streaming bit-rate is changed to 150 Kbps. This is
a median value between the maximum bit-rate and the minimum bit-rate. Point H is
similar to the case of Point C and Point I is the same as Point F.

3.2.2 Algorithm

Table 3 shows the pseudo-code for the NAATA. Part A of Table 3 shows the
variables that are used in the algorithm. The target_tr_bit is the current bit-rate of
streaming media service. The target_tr_bit is set with the value of other variables.
The init_bit denotes the initial requested bit-rate by the user, and the max_bit and
the min_bit represent the maximum bit-rate and the minimum bit-rate of the current
streaming service, respectively. Therefore the target_tr_bit is between the max_bit
and the min_bit like upper bound and lower bound. The tmp is used to check whether
a change of the target_tr_bit is possible. The flag is in order to record whether the
continuous transmission failures happen or not. The threshold_time indicates the
threshold time to recover target bit-rate and the threshold_fail represents threshold
to detect transmission failure. The count indicates the elapsed time after changing
the target_tr_bit and it preserves the threshold time. The NAATA has two stages:
the first is a “transmission failure stage” and the second is a “no failure stage”.

Part B of Table 3 shows three kinds of methods for addressing the transmission
failures. The first method is when the first transmission failure occurs; the second
method is for when the continuous transmission failure occurs and before the
recovery of bit-rate proceeds. The third method treats the other failures. Part B-1
of Table 3 shows the case that the first transmission failure occurs. In case of B-1, the
target_tr_bit is set with a half of the init_bit, and then the max_bit and the min_bit are

Multimed Tools Appl

Table 3 Pseudo-code for the NAATA

NAATA(int sentByte, int RcvByte) {
static int init = 1; // initial state flag
static int init_bit; // initial bit-rate (user requested bit-rate)
static int min_bit; // minimum bit-rate
static int max_bit; // maximum bit-rate
static int tmp; // temporal target bit-rate
static int target_tr_bit; // target bit-rate
static int count; // time count
static int flag = 0; // flag for continous problem
static int threshold_time = 10; // threshold time to recover target bit-rate
int threshold_fail = 0; // threshold to detect transmission failure
int diff = sentByte - RcvByte;
if(diff > threshold_fail) { // when transmission failure occurs

if(init) { // when first transmission failure occurs
target_tr_bit = init_bit / 2;
min_bit = max_bit = target_tr_bit;
init = 0;

} else if(flag == 1) { // when continuous transmission failure occurs
target_tr_bit = max_bit / 2;
min_bit = 0;
threshold_time += 10;

} else { // when the other transmission failure occurs
target_tr_bit = (max_bit+min_bit)/2;
min_bit = target_tr_bit;
threshold_time += 10;

}
flag = 1; // transmission failure occurred
count = 0;

} else { // when no transmission failure occurs
flag = 0; // no transmission failure
tmp = target_tr_bit + increased bit-rate; // calculate temporal target bit-rate
if(tmp < max_bit && tmp < init_bit){ // when tmp is less than maximum bit-rate and initial bit-rate

target_tr_bit = max_bit = tmp;
} else if(tmp >= init_bit) { // when tmp is same as initial bit-rate

target_tr_bit = init_bit;
count++;
if(count>=threshold_time) { // when count is greater than threshold

min_bit = 0;
threshold_time -= 10;
count = 0;

}
} else if(tmp >= max_bit) { // when tmp is greater than bandwidth

target_tr_bit = max_bit;
count++;
if(count>=threshold_time) { // when count is greater than threshold

min_bit = max_bit;
max_bit = init_bit;
count = 0;
threshold_time -= 10;

}
}

}

return target_tr_bit;
}

A

B

1

2

3

C

1

2

3

changed by target_tr_bit. Part B-2 of Table 3 shows the case of that the continuous
transmission failures occur. In case of B-2, since the min_bit is equal to the max_bit,
the target_tr_bit is changed with half of max_bit. The other cases are shown in the
part B-3 of Table 3. Since the min_bit and the max_bit are different, the target_tr_bit
is changed with the medium value between the min_bit and the max_bit.

Part C of Table 3, three kinds of methods are shown for recovering the dropped
bit-rate after failures are detected. The tmp is the sum of the target_tr_bit and the

Multimed Tools Appl

increased bit-rate. Part C-1 shows that the tmp is smaller than the max_bit and the
init_bit. In this case, the target_tr_bit and the max_bit are changed with tmp for
recovery service bit-rate. Part C-2 shows that the tmp is bigger than the init_bit. In this
case, the target_tr_bit is fixed as the init_bit, because the init_bit is the user requested
bit-rate and users do not need a higher service bit-rate than the user requested bit-
rate. Furthermore, if the service network is continuously stable, the count exceeds the
pre-defined threshold time. In that case, as the min_bit is changing to 0, the streaming
service is recovered to the initial state.

Part C-3 shows that the tmp is bigger than the max_bit. In this case, the streaming
service suffered from the transmission failures during the previous time-line. The
target_tr_bit is fixed as the max_bit, and the traffic state for streaming service will be
checked again for a limited period. If the service network is continually stable, the
count exceeds the pre-defined threshold time. In that case, as the min_bit is changing
to the max_bit and the max_bit is changing to the init_bit, the streaming service jumps
to the previous bit-rate level suffering a failure.

4 Performance evaluation

This section shows the performance of the NAATA. We compare the NAATA
with the ANAT algorithm and legacy transcoding method. In order to evaluate
the performance of the NAATA, three experimental metrics are identified: 1) the
number of transmission failures; 2) the average time interval among transmission
failures; and, 3) the overhead.

In order to evaluate the performance of the NAATA, the ANAT algorithm is
also implemented based on the IGI algorithm. In the ANAT method, an estimation
module, based on the IGI algorithm, estimates the available network bandwidth [11,
21]. This module also sets the transcoding target bit-rate according to the available
network bandwidth, and sends the bit rate to a transcoding module. A client also has
an IGI client module to cooperate with the ANAT estimation module.

Every module in each server is implemented using C language. The ffmpeg and
the ffserver are modified and applied to the transcoding module and the streaming
module, respectively [8]. The mplayer is modified and applied to the client pro-
grams [14].

Table 4 shows the hardware specification for the server and the client. Table 5
shows information about the media used in the experiment. Real network environ-
ments with IEEE 802.11 b and g are used for experiments.

Table 4 Server and client hardware specification

Server Mobile client 1 Mobile client 2

CPU AMD Athlon Intel Pentium 4 Intel XScale
MP 2200+ 1.8GHz Mobile 1.8GHz PXA270 416MHz

Memory 1GB 768MB 16MB Flash,
64MB SDRAM

Network 100Mbps fast ethernet IEEE 802.11 b/g IEEE 802.11b
Linux Kernel 2.6.9–71 2.6.9–34 2.4.24

Multimed Tools Appl

Table 5 Experiment media
information

Bit-rate Frame-rate Resolution

Movie 1 871.7Kbps 23.976fps 576 × 256
Movie 2 760.6Kbps 23.976fps 640 × 304

4.1 Performance of the NAATA

Figure 3 shows the streaming bit-rates of movie 1 as served by the ANATS and Figs. 4
and 5 show the streaming bit-rates of movies 1 and 2 as served by the NAATA. The
streaming media bit-rate in Figs. 4 and 5 are changed in real-time according to the
network states as these fluctuate by client movement or because of variable mobile
environments. As shown in Figs. 3, 4 and 5, both initial bit-rates are 200 Kbps. When
the first transmission failure occurs, the streaming bit-rate is changed to 100 Kbps in
Figs. 4 and 5. However the streaming media bit-rate in Fig. 3 is very unstable and
lower than in the NAATA.

The middle parts of the two figures show dynamic bit-rate adaptations between
the maximum bit-rate and the minimum bit-rate as decided by the current state
of the network. When a transmission failure occurs, the streaming bit-rate is changed
to a median value between minimum bit-rate and maximum bit-rate. After that,
the bit rate can recover linearly according to the network’s degree of stability. We
could see that the network is not good enough to support streaming service from
1400 to 2100 s in the Fig. 4, because target bit-rate is dropped from 200 Kbps to
100 Kbps or less. Instead of bit-rate dropping, re-buffing could be considered for
streaming media service in that period. If re-buffering is worked, user should wait
a few seconds at least 4 times, because there are 4 transmission failures at least in
that period. However more transmission failures could be occurred when target bit-
rate is 200 Kbps. Because target bit-rate is between 130 Kbps and 60 Kbps in that
period. Therefore user should wait a few seconds for streaming media service more
than 4 times in 700 s (approx. 11 min). It means that user should be patient every 2
or 3 min. However the NAATA supports seamless streaming media server without
any re-buffering.

Fig. 3 Streaming bit-rate of
movie 1 with ANATS

0 1000 2000 3000 4000 5000 6000

0

50

100

150

200

P
la

y
 B

it
-r

a
te

 (
K

b
p

s
)

Time (Sec)

Multimed Tools Appl

Fig. 4 Streaming bit-rate of
movie 1 with NAATA

As shown in Figs. 4 and 5, we can confirm that the NAATA serves a seamless
streaming media service with dynamic bit-rate adaptation. Although the quality of
play media drops due to the low bit-rate, it is better than the jittering and ceasing
phenomena of media streaming. If the streaming bit-rate is kept as the initial bit-rate
in the poor network bandwidth environment, the jittering and ceasing phenomena
cannot be avoided.

4.2 Accumulated number of transmission failure

Figure 6 shows the accumulated number of transmission failures in the NAATA,
the ANAT system and the legacy transcoding system. Various wireless network

Fig. 5 Streaming bit-rate of
movie 2 with NAATA

Multimed Tools Appl

Fig. 6 Accumulated number
of transmission failures

states are created for near-real service environments as mobile clients change their
locations.

In the legacy transcoding system, many transmission failures are discovered
and streaming service jittering and ceasing events appear. The ANAT system has
fewer transmission failures than the legacy transcoding system. Since the ANAT
system changes streaming bit-rates with the estimated available network bandwidth,
a network-adaptive streaming is possible. However, as shown in Fig. 6, periodic
transmission failures continue to exist and jittering and ceasing phenomena also
show up.

Otherwise, the NAATA results in reduced transmission failures of about 80%
compared with the legacy transcoding system and of about 40% compared with
the ANAT system. Furthermore, the NAATA avoids not only the continuous
transmission failures but also the periodic transmission failures. Given these reliable
results, the NAATA provides more seamless streaming media service than others.

4.3 Time interval between transmission failures

Figure 7 shows the time intervals between transmission failures in the NAATA and
the ANAT system. In the ANAT system, almost all of the time intervals are less
than 100 s, with a normal distribution and with a mean of 60 s. Thus, transmission
failures occur every 1 min on mobile clients. This indicates that the jittering and
ceasing events of streaming media occur every minute.

However, the proposed NAATA has long time intervals between failures when
compared to the ANAT system. In our experiments, the NAATA provided a
streaming media service, without any transmission failures, for 935 s at a maximum.
In particular, the time intervals of less than 60 s were minimal. Compare to the
ANAT system, transmission failures in the NAATA are distributed widely across the
total play time. Given these advantages, the NAATA provides seamless streaming
media services to mobile clients for a longer time.

Multimed Tools Appl

Fig. 7 Histogram for time
interval between transmission
failures

4.4 Overhead of NAATA and ANAT system

Available network bandwidth-based transcoding systems have overhead associated
with estimating the available network bandwidth. The ANAT system uses the IGI
algorithm to estimate available network bandwidth. As mentioned in Section 2.3, the
IGI algorithm uses a lot of packets for continuous estimation. A sender makes the
packets as small as possible. It also continuously increases the number of packets
until the number of received packets on receiver side is same as the number of sent
packets on the sender side. If a packet size is 500 bytes and at least 60 packets are
required, then more than 30 Kbytes are necessary per estimation [11, 21]. There is
overhead in the ANAT method.

In order to provide seamless steaming service to clients, a short interval between
estimations is suggested. The short interval lets the target bit-rate quickly adapt to
the variable network bandwidth. However, a short interval generates more overhead.
For example, as mentioned above, if the estimation process performs per 1 s, the
traffic overhead of 30 Kbytes occurs per 1 s. If a streaming service requires a network
bandwidth between 50 Kbps and 200 Kbps, then the overhead for 1 s is almost equal
to the bandwidth of the streaming service for 1 to 4 clients.

To evaluate the network state in the NAATA, a sender uses only a 24 byte payload
composed of a TCP packet header and an integer variable. The integer variable is
used to store the amount of data received by the client for 1 s. Although network
state checking is done every second, an overhead of only 192 bps occurs and it does
not impact upon the total network traffic. From these calculations, the overhead of
the ANAT is 1,250 times bigger than that of the NAATA. As a result, the NAATA
not only has little overhead but it also provides network-adaptive streaming media
service.

5 Conclusion

In a mobile client environment, a streaming media service has constraints such as low
computing power, unstable wireless networks, and so on. The bandwidth of wireless

Multimed Tools Appl

network fluctuates according to mobile clients’ movements and the distance from
the AP; as a result, it is hard to provide a stable QoS-guaranteed streaming media
service.

In this paper, the NAATA was proposed to provide seamless streaming media ser-
vices for mobile clients. The proposed method detects transmission failures, changes
transcoding target bit-rates according to the network states and provides seamless
steaming media services for mobile clients. In our experiments, the NAATA reduced
transmission failures of 80% and 40% when compared with the legacy transcoding
system and the ANAT system, respectively. We also established that the NAATA
has less overhead and long time intervals between transmission failures. Based
on these advantages, we confirmed that the NAATA provides a more seamless
streaming media service for mobile clients, without jittering or ceasing phenomena.

References

1. Bhradvaj H, Joshi A, Auephanwiriyakul S (1998) An active transcoding proxy to support mobile
web access. In: Proc. intl. conf. on reliable distributed system, pp 118–123

2. Chakareski J, Frossard P (2007) Adaptive systems for improved media streaming experience.
IEEE Commun Mag 45(1):77–83

3. Chandra S, Ellis CS, Vahdat A (2000) Differentiated multimedia web services using quality
aware transcoding. In: Proc. IEEE INFOCOMM 2000, pp 961–969

4. Cho S, Woo H, Lee J-w (2003) ATFRC: adaptive TCP friendly rate control protocol. Lect Notes
Comput Sci 2662:171–180

5. Chou PA, Miao Z (2006) Rate-distortion optimized streaming of packetized media. IEEE Trans
Multimedia 8(2):390–404

6. Du DHC, Lee YJ (1999) Scalable server and storage architectures for video streaming. In: Proc.
IEEE intl. conf. on multimedia computing and systems, pp 191–206

7. Feng WC, Lie M (2000) Critical bandwidth allocation techniques for stored video delivery across
best-effort networks. In: Proc. the 20th intl. conf. on distributed computing systems, pp 201–207

8. ffmpeg.org (2009) ffmpeg open source project homepage. http://ffmpeg.org/
9. Forouzan BA (2001) Data communications and networking, 2nd edn. McGraw Hill, London

10. Hu N, Steenkiste P (2002) Estimating available bandwidth using packet pair probing. Technical
report CMU-CS-02-116

11. Hu N, Steenkiste P (2003) Evaluation and characterization of available bandwidth probing tech-
niques. IEEE JSAC (Special Issue in Internet and WWW measurement, Mapping and Modeling)
21(6):879–894

12. Kohler E, Handley M, Floyd S (2006) Designing DCCP: congestion control without reliability.
In: SIGCOMM’06, pp 27–38

13. Kurose JF, Ross KW (2004) Computer networking—a top-down approach featuring the internet.
Addison Wesley, Reading

14. mplayerhq.hu (2009) mplayer open source project homepage. http://www.mplayerhq.hu/
15. Padhye J, Kurose J, Towsley D, Koodli R (1999) A model based TCP-friendly rate control

protocol. NOSSDAV99
16. Roy S, Covell M, Ankcorn J, Wee S, Yoshimura T (2003) A system architecture for managing

mobile streaming media services. In: Proc. 23rd intl. conf. on distributed computing systems
workshops, pp 408–413

17. Seo D, Lee J, Kim Y, Choi C, Choi H, Jung I (2006) Load distribution strategies in cluster-based
transcoding servers for mobile clients. Lect Notes Comput Sci 3983:1156–1165

18. Seo D, Lee J, Kim Y, Choi C, Kim M, Jung I (2007) Resource consumption-aware QoS in cluster-
based VOD servers. J Systems Archit EUROMICRO J 53(1):39–52

19. Sitaram D, Dan A (2000) Multimedia servers: applications, environments, and design. Morgan
Kaufmann, San Francisco

http://ffmpeg.org/
http://www.mplayerhq.hu/

Multimed Tools Appl

20. Vetro A, Sun H (2001) Media conversions to support mobile users. In: Proc. IEEE Canadian
conf. on electrical and computer engineering, pp 607–612

21. Wee S, Apostolopoulos J, Tan W-t, Roy S (2003) Research and design of a mobile streaming
media content delivery network. In: Proc. IEEE ICME, pp I-5–I-8

Dongmahn Seo received his B.S. and M.S. degrees in Computer Engineering from Kangwon
National Universiy in 2002 and 2004, respectively. From 2008 to 2009, he was a visiting scholar at
University of Minnesota Duluth. He is currently a Ph.D. candidate in Computer Engineering at
Kangwon National University. His research interests include multimedia system, parallel processing,
embedded system and wireless sensor network.

Inbum Jung received his B.S. degree from Korea University, in 1985 and the M.S. and Ph.D.
degrees in Computer Science from KAIST, in 1994 and 2000, respectively. From 1984 to 1995, he was
with Samsung Electronics Co. Ltd., Korea. He is currently a faculty member at Kangwon National
University. His research interests include operating system, parallel processing, streaming media and
wireless sensor network.

	Network-adaptive autonomic transcoding algorithm for seamless streaming media service of mobile clients
	Abstract
	Introduction
	Related work
	Transcoding systems
	Network-adaptive QoS guarantee methods
	Available network bandwidth-adaptive transcoding
	Estimation of available network bandwidth
	Available network bandwidth-adaptive transcoding algorithm

	The Network Adaptive Autonomic Transcoding Algorithm (NAATA)
	The AIMD congestion control algorithm in TCP
	Characteristics of the NAATA
	Operating behavior
	Algorithm

	Performance evaluation
	Performance of the NAATA
	Accumulated number of transmission failure
	Time interval between transmission failures
	Overhead of NAATA and ANAT system

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

