International Journal of Parallel Programming, Vol. 29, No. 6, December 2001 (© 2001)

Two-Phase Barrier: A Synchronization
Primitive for Improving the Processor
Utilization

Inbum Jung,! Jongwoong Hyun, Joonwon Lee, and
Joongsoo Ma

Received February 28, 2000, revised February 1, 2001

Barrier is widely used for synchronization in parallel programs. Since the
process arrived earlier than others should wait at the barrier, the total processor
utilization decreases. In this paper, to find the sources of the barrier waiting
time, parallel programs are executed on the various grain sizes through execu-
tion-driven simulations. In simulation studies, we found that even if approxi-
mately equal amounts of work are distributed to each processor, all processes
may not arrive at a barrier at the same time. The reasons are that the different
numbers of cache misses and instructions within in partitioned grains result in
the difference in arrival time of processors at the barrier. In this paper, the two-
phased barrier is considered to reduce the blind waiting time in the traditional
barrier scheme, which can be simply constructed by dividing one specific stage
for the synchronization into two stages. On each stage, processes decide their
stall or not, which is dependent on the current execution state of grains running
on any given processors. Simulation results show that the reduced barrier
waiting times attributed to the two-phased barrier contribute to the performance
improvement of parallel programs.

KEY WORDS: Barrier; synchronization; cache miss; grain size; shared memory
multiprocessors.

! Corresponding author: Division of Computer, Information & Telecommunication Engineer-
ing, Kangwon National University, 192-1, Hyoja 2-Dong Chunchon, Kangwon-Do 200-701,
Korea. E-mail: ibjung@kangwon.ac.kr

607

0885-7458/01/1200-0607 /0 © 2001 Plenum Publishing Corporation

608 Jung, Hyun, Lee, and Ma

1. INTRODUCTION

Barriers are commonly used for synchronization among all the processors
in parallel programs. Upon reaching a barrier, the processor must wait
until all processors reach the barrier. Since processors that are blocked at
the barrier are essentially idling, they cannot contribute to any useful work.
Barriers may be automatically inserted by a parallelizing compiler or may be
introduced explicitly by the programmer. Even if the compiler or program-
mer distributes the computation so that all processors execute an identical
code, they may not arrive at a barrier at the same time. If the code contains
conditional statements, different processors may follow different control
paths, and thus they executes varying number of instructions. Furthermore,
the times for memory accesses may vary for different processors. The pro-
cessors suffering from cache misses may fall behind in execution, hence late
arrival at the barrier even if all processors are executing identical codes. In
data parallel processing, the workload comprising large data sets is parti-
tioned according to the chosen grain size. The resulting grains mean the
sets of data elements and occupy the contiguous blocks of memory. Under
such conditions, even if the same number of grains is allocated to each
processor, the grains loaded into processors’ cache result in the different
cache conflict misses in each processor. In this paper, to study the sources
of the barrier waiting time mentioned above, data parallel programs are
executed under various grain sizes and are analyzed to identify the sources
of variation in the barrier waiting time.

The waiting time at a barrier also results from poor functionality in
traditional barriers, since processors reaching the barriers cannot found
the execution state of the grains running on the other processors.
However, for some parallel programs, if the information of partially
executed grains is available in the location of barriers, the processors
reaching at a barrier have a chance to execute the next iteration instead of
blind waiting at the barriers. In this paper, we suggest a synchronization
primitive called two-phase barrier, which is composed of the first-phase
that notifies the current executing position within in the grains running on
each processor, and the second-phase that determines whether or not to
stall based on the counter value of the previous stage. The two-phase
barrier reduces the barrier waiting time, since if all processors already pass
the first-phase, early arriving processors at the second-phase then do not
wait and can proceed to the next parallel iteration. Also, it is simply con-
structed by adding two counter variables in the traditional barrier struc-
ture. Our simulation results show that the proposed two-phase barrier
reduces the barrier waiting time, and also improves the performance of
our benchmark parallel programs.

Two-Phase Barrier 609

The paper is structured as follows. Section 2 describes benchmark
parallel programs and their grain size and scheduling policies of grains used
in this study. In this environment, we measure the breakdown items of the
processor execution time, including the barrier waiting time, under the
various grain sizes and analyze the sources of the barrier waiting time.
Section 3 suggests the two-phase barrier to reduce the barrier waiting time
and evaluates its performance on our benchmark programs. In Section 4
related work is presented. Finally, the conclusion is presented in Section 5.

2. BENCHMARK PROGRAMS AND THEIR PERFORMANCES

2.1. Data Parallel Programs

Though parallelism can be found in various forms, data parallelism is
the most intuitive and commonplace because target programs of parallel
processing usually comprise large data set. A grain size determines the
basic program segment chosen for parallel processing. In data parallel
processing, since each data element is subject to the identical processing,
the grain sizes for parallel processing are determined by dividing the total
data elements by the number of available processors. In this paper,
benchmark parallel programs are run under several grain sizes to observe
how the barrier waiting time is affected by the flow of control paths and by
the cache misses in partitioned grains.

The partitioned grains are allocated to each processor using the static
or dynamic scheduling policy."*!® The dynamic scheduling policy per-
forms scheduling activities to the grains at runtime. As soon as a process
completes the computation of a grain, the process begins executing the next
grain in the grain queue. The dynamic scheduling improves the processor
utilization because a program uses the available processors released by
other processes during its execution. However, it results in both scheduling
overheads to handle the grain queue and the loss of cache locality. On the
other hand, the static scheduling policy designates grains to each processor
before a program is executed. Since the grains allocated to each processor
are not changed until the program finishes, the cache locality of programs
can be fully exploited. We use the static scheduling policy in this study,
since cache locality is important for achieving good performance in data
parallel programs. 19

The two data parallel programs for this study are FFT (Fast Fourier
Transform) and LU (LU Decomposition).” These programs show data
parallelism, since they perform identical operations on all data elements,
and thus the choice of grain sizes is clearly achieved by dividing the data
elements by the multiple number of processors. In particular, since these

610 Jung, Hyun, Lee, and Ma

programs do not generate new data elements dynamically during the exe-
cution, they are easy to evaluate the performance variations according to
the chosen grain sizes. All these programs are written in C and use the
synchronization and sharing primitives provided by the SGI’s parallel
macros package. During parallel computing, a centralized barrier is used
to synchronize between processors. We assume that these benchmark
programs are run with eight processes on eight processors. The following
describes the primary data structures, the computational behavior and the
grain sizes of two data parallel programs chosen.

2.1.1. Fast Fourier Transform (FFT)

The FFT program we have used here is a classic iterative Cooley—
Tukey algorithm for an n point; one-dimensional, unordered and radix-2
FFT. This program performs log # iterations of the most outer loop. Each
iteration does n complex multiplications and additions. Primary data
structures are two one-dimensional arrays composed of both a source point
array and a result point array. The Fig. 1 is the FFT program pseudo code.

The outer loop starting at line 6 is executed log n times for an »n point
FFT. In every iteration of the outer loop, the array R is updated using the
elements that were stored in the array S. The chunk_size represented in
the line 5 is a unit of work executed once by all processors. Since we use the

1: Procedure FFT(R, S, n) {

2 r=logn;

3: m_fork(P); /* set multiple processes */

4 id = processor's label;

5 chunk_size = grain_size x N; /* N is the number of processors used */
6: for(m=0;m<r-1;m++) { /* outer loop */

T. for(i=0;i<n-1;i++){

8 S[i) = RI[i] ; /* address exchanging for interchanging their roles */
9: }

10: i =id X grain_size;

11 for(;i<n-1;i+=chunk_size) {

12: for(; grain_ size; grain_size --) {

13: % Let(byb, b,.;) be the binary representation of i */

14:] (by. .. by 0byup));

15: k=(by... b, 1byb,);

16: R[l] _S[l + S[k X ® (hO - bm-1 0bm+1. brli

17: }

18: }

19: barrier(semaphore, N);

20: }

21)

Fig. 1. Fast fourier transform program using the Cooley-Turkey algorithm.

Two-Phase Barrier 611

Itera cration 2

1 . - - Grain for P,

—: rd .. « e e . Grain for P,

| Grain for P,

_— r L - " Grain for P,

- - ., Grain for Py

| ..y - . - - : Grain for Pg

—) Grain for P,

—/ T Grain for Py

Array S Array R Array S Array R Array R

(P; denotes the processor labeled i.)

Fig. 2. A snapshot of the FFT program on parallel processing.

static scheduling policy for the scheduling of grains onto processors, each
processor executes its grain within a chunk and moves to its grain of the
next chunk. In the line 16, all processors update R[i] by using S[j] and
S[k] within their grains, and also compute the powers of w known as
twiddle factors. The FFT program shows that the amount of computation
of these twiddle factors is dependent on the relative position of each grain
within the array R. This characteristic may cause the load imbalance even
if the same number of grains is distributed to each processor. In the line 19,
the traditional centralized barrier is applied to synchronize processors in
the outermost loop.

For our experiments, we execute FFT on 65536 input points (1 Mbytes
in size). The coarsest grain size is 8092 points, which is achieved by dividing
a source point array S by eight processors. Other grain sizes considered are
4096, 2048, 1024, 512, 128, 64, 32, 16, 8, 4, and 2 points. All grain sizes
balance the loads among all processors, since the same number of grains is
allocated to each processor. Figure 2 shows an example of the partitioned
grains under the coarsest grain size and iteration steps during the execu-
tion. As shown in this figure, arrays S and R are in turn used as a source
point array or a result point array and the memory access pattern of this
program follows divide-and-conquer characteristics.

2.1.2. LU Decomposition (LU)

This program decomposes matrix 4 as the product of a lower-trian-
gular matrix L and an upper-triangular matrix U so that 4 = LxU. The

612 Jung, Hyun, Lee, and Ma

1: Procedure LU(A, n) {
2 m_fork(P); /* set multiple processes */

3 id = processor's label;

4 for(k=0; k<n-1;k++) { /* outerloop */

5: for(j=k+l;j<n-1;j+4+){

0: lock(lock_var); /* spin lock */

7 Alk,j] =Alk,j]/A[k k]; /* compute a pivot row */
8: unlock(lock_var); ~ /* spin unlock */

9: }

10: /% N is the number of processors used */

11 grain_size = remaining rows / (N X grain_divisor);
12: chunk_size = grain_size XN ;

13: i=(k+1)+(id x grain_size);

14: for(; i <n-1;1+= chunk_size) {

15: for(; grain_size ; grain_size --)

16: for=k+1;j<n-1;j++)

17: Ali, j1=A[L 1 - Al K] X ALk, /]
18: }

19: barrier(semaphore, N);

20: }

Fig. 3. LU program.

Fig. 3 shows the LU program pseudo code. The main data structure is a
two-dimensional matrix 4 being decomposed. For k varying from 0 to
n—1, this program systematically eliminates the values of the row k£ from
those of the rows k+1 to n—1 so that the matrix of coefficients becomes
upper-triangular. The pivot row’s computation executes on the line 7. We
regard this line as a serial code due to a relatively small amount of its
computation. After a pivot row’s computation, each processor uses the
pivot row to modify all rows owned by it to the down of the pivot.

As computation proceeds in LU, the pivot row moves to the down and
the number of rows that remain to its down decreases. As a result, the
amount of data accessed and work done per the pivot row decreases.
Under the pure static grain scheduling policy, the gradual decrease in
workloads appears to poor processor utilization, since the processors par-
ticipating in parallel computing are not used as the computation proceeds.
To utilize all processors until the program completes, we recalculate the
grain size by dividing the remaining rows underneath the pivot-row by
both the number of processors and a grain divisor defined as a 32-bit
integer variable. Thus, the chunk_size on the line 12 is determined by mul-
tiplying the number of processors by the recalculated grain size. After
reconstructing the chunks, each processor executes its grain within a chunk
and moves to its grain of the next chunk. These procedures are shown
between the line 11 and 18. In the line 19, a traditional centralized barrier is
used to synchronize processors in the outermost loop.

Two-Phase Barrier 613

¥ uwnjod
[uurnjo)

Matrix A YV aund Involve a pivot row Matrix A

——> A grain for P,

X .}-» Inactive areas
—T—> A grain for P, ”

Alij] = AlkjI/A[/K] < — Involve a pivot row

Row

Active areas are
divided by P, ~Pg

—— A grain for P, Row i

——> A grain for Py

- . . Alij] = A[ij] - A[ik] XA[kj] -
(b) The initial partition of matrix

with static scheduling (b) The partition of matrix after more

(P; denotes the processor labeled i.) than half of a matrix is computed

Fig. 4. A snapshot of the LU program on parallel processing.

Under our modified static grain scheduling policy, Fig. 4 shows the
snapshot of the LU program during the parallel processing. Figure 4(a)
shows the initial partition of a matrix 4 allocated to eight processors before
starting the computation. Figure 4(b) shows that after more than half of a
matrix is computed, only the remaining rows underneath the pivot row k&
are active and they are divided into eight processors. At this stage, only the
lower-right k£ x k submatrix of A is computationally active. As shown in
these figures, the number of rows allocated into each processor is decreased
as the remaining active area shrinks.

Since the number of processors is fixed in our study, the grain divisor
value represents the degree of granularity used in this program. The grain
divisors considered are 1, 2, 3, 4, 5, 6, 7, 8, and 9. Larger grain divisors
mean that finer grain sizes are applied at the remaining rows underneath
the pivot-row. Thus, the finest grain size is grain divisor 9, and the coarsest
grain size is grain divisor 1. For our experiments we run the LU program
with a 256 x 256 matrix (512 Kbytes in size).

2.2. Simulation Environment

We assume the shared-memory multiprocessors system with a shared
bus as a machine chosen for this study. This system is widely used and
commercialized for computing servers due to its low-cost high computing
power and ease of use. These machines are also called UMA (Uniform
Memory Access) machines, since access to a memory location via the bus
takes the same amount of time regardless of which processor is performing
the access and what memory location is being accessed. Cache coherency is

614 Jung, Hyun, Lee, and Ma

Table I. Timing Parameters

Events Penalties
(operations) (cycles)
A write on a shared line 3

(The shared lines on other caches are invalidated)

A cache miss 7
(A missed cache line is supplied by an another cache)

A cache miss 22
(A missed cache line is supplied by the main memory)

maintained across processors through a variety of snooping and invalida-
tion techniques. The simulated environment for this machine is described
as follows.

The simulation environment consists of a functional simulator that
executes parallel programs, and an architectural simulator that models the
shared memory multiprocessors. An efficient program-driven simulator,
MINT (Mips INTerpreter)'® is used as a functional simulator. The MINT
supplies a memory-reference generator and simulation libraries. The
memory reference generator executes a program on several processors and
sends an event to the architectural simulator whenever the program
encounters specific operations like memory read, write or synchronization.
The simulation libraries support the execution of parallel programs using a
shared memory multiprocessors system and provide a set of primitives to
control events received from the memory reference generator. We construct
an architectural simulator based on the multiprocessors with a shared bus.
Each processor is assumed to be a RISC processor with the same cache size
and each instruction is executed in a single cycle except memory reference.

We assume that cache structure is 2-way set associative and that cache
size is 128 Kbytes with a cache line size of 16 bytes. The simulated cache
coherency protocol is the Illinois protocol.’’” On current microprocessors,
the main memory access-time is about 80 ns, the clock rate is 250 Mhz
(e.g., MIPS R10000, UltraSparc-IT) and the system bus width is 128 bits.
Table I shows timing values used in the cache coherency protocol based on
these parameters including 1 address cycle and 1 bus operation cycle.

2.3. Performances

In this subsection, the performances of our benchmark parallel
programs are measured across a range of grain sizes on the given simula-
tion environment and the causes of performance variations are then

Two-Phase Barrier 615

1.60E+08
OComputation Time
1.40E408 1o T B@Miss Time
1.20E+08 B Barrier Time
1.00E+08
8
_g 8.00E+07
(@]
6.00E+07
4 .00E+07 |
2.00E+07
0.00E+00
N DA D = WO = N = NN ®
O N MDD O =2 OO0 O =
o OO NN A O ©
5 O N

Grain sizes(number of points)

Fig. 5. FFT: 8 processors, 65536 points.

analyzed. The breakdown items in the processor execution time are
composed of the spin-time, barrier-time, miss-time, and computation-time.
The spin-time is the busy-waiting time due to spin-lock operations. The
barrier-time is the time spent waiting at the barriers. The miss-time is the
time spent waiting for data to be fetched into the cache. The computation-
time is the time spent doing useful work.

* FFT Behavior. Figure 5 plots the breakdown of the processor exe-
cution times obtained across a range of grain sizes. This figure shows that
the miss-time occupies the primary portion of the execution time. The best
performance is observed with the coarsest grain size, 8192 points, since this
grain size results in less miss-time and less barrier time than other grain
sizes. In particular, when fine grain sizes are used, the overhead to handle
fine grains incurs higher computation times.

According to our measurements, the barrier waiting times are affected
by the differences of cache misses in processors, even if the same amount of
work is assigned to each processor. The barrier times under fine grain sizes
are higher than those at coarse grain sizes, since using the fine grain sizes
raises the possibility of cache conflict misses due to the address interference
between the grains allocated to the same processor. Processors that incur
few cache misses reach barriers earlier than other processors, and thus they
result in the increase in barrier waiting times.

616 Jung, Hyun, Lee, and Ma

2.50E+08

O Computation Time
2.00E+08 -~~~ ~ BAMiss Time

B Barrier Time
1 50E+08 _OSpin Time

Cycles

1.00E+08 7/ N7 7 B/ Ol I

5.00E+07

0.00E+00

Grain divisors(reverse of grain size)

Fig. 6. LU: 8 processors, a matrix of 256 x 256.

* LU Behavior. Figure 6 shows the breakdown of the processor exe-
cution times when the LU program is run across a range of grain sizes. As
described in the Subsection 2.1, the larger grain divisors mean the finer
grain sizes. The best performance is from the coarsest grain size, i.e., grains
divisor 1. The miss-time is given much weight in the processor execution
time. The uniformity in the spin waiting time of Fig. 6 comes from the
portion of the sequential component to execute the pivot rows.

The barrier waiting time of the LU program depends on not only the
difference of cache misses before reaching the barrier but also the intrinsic
load imbalance between processors due to gradually decreasing workload.
In particular, Fig. 6 shows the higher barrier waiting time in fine grain
sizes. The reason is that when using fine grain sizes, all processors are not
provided with the exactly same number of grains. Even though the grain
divisors mitigate this phenomenon, this imbalance is unavoidable due to
the characteristic of the static scheduling policy designating the grains to
each processor at the compile-time. If some processors are assigned more
number of grains as compared with other processors, they arrive late at
barriers. Another reason is that since fine grain sizes allocate many small
grains to each processor, the address interference between the grains
running on the same processor results in the difference cache misses in each
processor. For these reasons, the fine grain sizes result in higher barrier
waiting times.

Two-Phase Barrier 617

2.4. Summary for Experimental Results

From the above simulation results, we observed that varying the
barrier waiting times were highly affected by the difference of the cache
misses incurred by each processor, even if nearly the same number of grains
was allocated to each processor. Another hidden reason is the lack of
functionality of the traditional barrier scheme. In this barrier scheme, early
arriving processors cannot discover how many elements are remained
uncomputed on the unarriving processors. If this information is available,
for some parallel programs like our benchmark programs, the processors
reaching early at a barrier can continue to execute the next iteration with
the partially completed grains involved in unarriving processors.

Based on this observation, we suggest a two-phase barrier in the next
Section. Though some processors may fall behind in execution, the two-
phase barrier may help reduce the possibility of blocking of early arriving
processors at barriers.

3. TWO-PHASE BARRIER

3.1. Basic Configuration

In the previous Section, even if approximately equal amount of work
was scheduled on each processor between successive barrier synchroniza-
tions, all processors did not arrive at a barrier at the same time. The pro-
cessors that are stalled waiting for other processors to reach the barrier are
essentially idling and cannot do any useful work. However, when parallel
programs preserve the weak data dependence between barrier synchroniza-
tions, the blind waiting at a barrier can be avoided if early arriving proces-
sors can find the information about the grains executed partially by
unarrived processors. The arriving processors can continue to execute the
next parallel iteration within the limited range without violating the data
dependency. However, since the traditional barrier mechanism does not
support this functionality to reduce the idling time of processors at
barriers, we devise the two-phased barrier to provide the forward progress
to early arriving processors at barriers.

The two-phase barrier is composed of two stage’s individual opera-
tions rather than a specific point at which the processors must synchronize.
The first stage is a checkpoint-phase and the second stage is a decision-point
phase. Figure 7 illustrates the location of the traditional centralized barrier
and the two-phase barrier, in the situation where a parallel program uses N
processors and executes N parallel iterations, and all processors should be
synchronized at the end of each iteration. As shown in this figure, the

618 Jung, Hyun, Lee, and Ma

P,P,, ...P, : processors
FE—— st . .
1* iteration /\an iteration 1" iteration / E Z“" iteration
P ... P, P, ...P,

checkpoint phase checkpoint phase

stall stall or pass l l
barrier v barrier decision-pdint phase decision-point phase

< Original centralized barrier > < Two-phase barrier >

Fig. 7. The location of barriers in parallel programs.

checkpoint(semaphore, N) decision-point(semaphore, N)
{ {
Lock(A); /*spinlock */ Lock(A); /* spin lock */
If(checkpoint_counter = = N) if(checkpoint_counter < N) {
If(decisionpoint_counter < N) waiting_in_decisionpoint ++ ;
waiting_in_checkpoint ++; Unlock(A); /* spin unlock */
Unlock(A); «*spin unlock */ [P(sem_decision); /* semaphore P operation */

Lock(A);
}else {
if(decisionpoint_counter == N — 1) { /* last processor ? */
decisionpoint_counter
= checkpoint_counter = 0;

if(waiting_in_checkpoint) { /* waiting processors ? */
waiting_in_checkpoint - -;
V(sem_check); /* semaphore V operation */

P(sem_check); /* sent
Lock(A);
}

}else {
checkpoint_counter ++;
if(checkpoint_counter = = N) /* last pr

if(waiting_processor_in_decision){
waiting_processor_in_dicision - -;
V(sem_decision); g

re P operation */

}

} Unlock(A); /* spin unlock */
Unlock(A); /* spin unlock */ goto L2000;
goto L1000; }
} }
if(waiting_in_checkpoint) { if(waiting_in_decisionpoint) {
waiting_in_checkpoint - -; waiting_in_decisionpoint - -;
checkpoint_counter ++; if(decisionpoint_counter == N — 1) { /* last processor ? */
Unlock(A); /*spinunlock */ decisionpoint_counter = checkpoint_counter = 0;
V(sem_check); /* semaphore V operation */ else
} decisionpoint_counter ++;
L1000: Unlock(A); /* spin unlock */
} V(sem_decision); /* semaphore V operation */
}else {
decisionpoint_counter ++;
Unlock(A);
}
1.2000:
< checkpoint phase > !

< decision-point phase >

Fig. 8. Internal structure of two-phase barrier.

Two-Phase Barrier 619

ocation of the decision-point phase in the two phase barrier mechanisms is
equal to that of the traditional barrier primitive, while the checkpoint
phase is inserted between decision-point phases and its accurate location
should be determined by programmers, based on the data dependency
between barrier synchronizations.

Figure 8 shows the pseudo codes for the internal structure of two-
phased barrier. Each phase exploits the spin lock primitive and two
semaphore primitives to handle the global data and processors’ waiting
queues. And also, two global counter variables are employed in two stages.
One is called as a checkpoint counter and the other one is called as a deci-
sion-point counter. Arriving at the checkpoint-phase, each processor marks
its arrival by incrementing a checkpoint counter. Upon reaching at the
decision-point phase, a processor increments a decision-point counter and
also determines whether to stall or not, based on the value of the check-
point counter. If the value of the checkpoint counter is equal to the number
of processors participated in parallel processing, the processor can execute
the next codes over the decision-point phase. On the other hand, the value
of the decision-point counter is employed to check the stalling condition at
the next checkpoint phase. For example, when a processor arrives at the
next checkpoint phase over the decision-point phase, if the value of deci-
sion-point counter is less than the number of processors, this processor
should be stalled at this checkpoint phase.

Figure 9 shows the flows of the synchronization and stalling events.
Processors deviate from their stalling state when the last processor reaches
either at the preceding decision-point phase or at the check-point phase.

P, P, ...P, : processors

1* iteration

b

checkpoint phase

TfZ

1* iteration

/ EEM iteration
et |Pa stall
oo

checkpoint phase

checkpoint phase
P, P, ... P,

synchronize l l l

decision-point phase

(a) Condition for synchronization

stall

_—

decision-point phase

<

decision-point phase

(b) Condition for stalling

Fig. 9. Synchronization and stall of processors in two-phase barrier mechanisms.

620 Jung, Hyun, Lee, and Ma

From this functionality, the semantics of the two-phased barrier’s mecha-
nism is described in below.

* Condition for Synchronization. Processors are synchronized at a
decision-point phase if and only if all of the processors have passed their
preceding checkpoint phase.

* Condition for Stalling. Processors stall at a decision-point phase
if and only if they have not all passed the preceding checkpoint phase.
Processors also stall at a checkpoint phase if and only if they have not all
reached at their preceding decision-point phase.

3.2. Examples using Two-Phase Barrier

The two-phase barrier can provide the possibility of non-blocking at a
synchronization operation instead of the blind-waiting of the traditional
barrier schemes. We apply the two-phase barrier to the FFT and LU
programs introduced in Section 2. These programs appear to be the weak
data dependency between barrier synchronizations, since the last elements
of arrays are not immediately used after the synchronizations. Thus, the
two-phase barrier can be applied easily.

1: Procedure FFT(R, S,n) {

2: r=logn;

3: m_fork(P); /* set multiple processes */

4 id = processor s label;

5: chunk_size = grain_size x N; /* N is the number of processors used */
6: for(m=0;m<r-1;m++) { /* outer loop */

7 for(i=0;i<n—1;i++){

8: S[i] = R[i] ; /* address exchanging for interchanging their roles */
9: }

10: i=1d X grain_size;

11 for(;i<n—1;i+=chunk_size) {

12: for(; grain_size; grain_size --) {

13: if(half of each grain is executed)

14: checkpoint(semaphore, N); /* checkpoint phase */
15: /% Let(bgb, b,) be the binary representation of i */

l6: J=y. . byy 0B,y);

17: k=(by...b,,Ib,,...b.);

18: RIil = S[j] + S[K] X 0 0 ..Iml»l(}hmd..hr-l);

19: }

20: }

21: decision-point(semaphore, N); /* decision point phase */

22: }

23}

Fig. 10. Fast fourier transform using the two phase-barrier.

Two-Phase Barrier 621

The Fig. 10 shows the case when the two-phase barrier is applied to
the FFT program. From the data access pattern shown in Fig. 2, we find
that if all processors execute the half of their grains, early arriving proces-
sors at the decision-point can continue to execute the next iteration without
waiting to synchronize at this phase. From this observation, we insert the
checkpoint phase at line 14, while the decision-point phase is at line 21. As
shown in Fig. 1, the line 21 is in the same location as where the traditional
centralized barrier was located.

Figure 11 shows the case when the two-phase barrier is applied to the
LU program. As shown in Fig. 4, the first row among the remaining rows
underneath the current pivot row is the pivot row for the next iteration.
Thus, the checkpoint phase may be placed at the point where the first row
within in the grain is executed. If all processors execute the first row, early
arriving processors at a decision-point phase can continue to the next
iteration. From this observation, we insert the checkpoint phase at line 17,
while the decision-point phase is at line 21 as before.

1: Procedure LUA, n) {
m_fork(P); /* set multiple processes */

2

3 id = processors label;

4 for(k=0;k<n-1;k++) { /* outer loop */

5: for(j=k+l;j<n—1;j++) {

6: lock(lock_var); /* spin lock */

7 Alk,jl =Alk,jl/Alk kl; /% compute a pivot row */
8: unlock(lock_var); ~ /* spin unlock */
9: }

10: /* N is the number of processors used */

11 grain_size = remaining rows / (N X grain_divisor),

12: chunk_size = grain_size XN ;

13: i=(k+1)+(id x grain_size);

14: for(; i <n—1;i+=chunk_size) {

15: for(; grain_size ; grain_size --) {

16: if(the first row of allocated grain is executed)
17: checkpoint(semaphore, N); /* checkpoint phase */
18: for(j=k+ L;j<n-1;j++)

19: Ali, j1=Ali, j1 - Ali, k] X ALk, /1 }

20: }

21: decision-point(semaphore, N);

22: }

23)

Fig. 11. LU program using the two phase-barrier.

622 Jung, Hyun, Lee, and Ma

3.3. Performances under Two-Phase Barrier

To evaluate the performance of the two-phase barrier, the barrier
waiting times are measured for our proposed two-phase barrier scheme as
well as for the traditional centralized barrier scheme. We use the same
workload as described in Section 2. For detailed experiments, parallel
programs are run with eight processors across the range of grain sizes
described in Section 2. Since the number of processors participated affects
the barrier waiting times, they are measured varying the number of proces-
sors. In particular, in the two-phase barrier, the barrier waiting time is the
sum of the waiting time at decision-point phase and the one at checkpoint
phase. The proposed barrier also has overhead from using if-statements to
find the checkpoint phase within programs. Nonetheless, since the two-
phase barrier provides the possibility of non-blocking synchronization, the
execution time of parallel programs is expected to be improved.

3.3.1. FFT program

Figure 12(a) shows the barrier waiting times induced by both the two-
phase barrier and the exiting centralized barrier across a range of grain
sizes. The results show that the two-phase barrier reduces the barrier
waiting times at all grain sizes. For example, the reduction rate of the
barrier waiting time is 84 % at the coarsest grain size (8192 points) when
compared to using the traditional centralized barrier. This reduction in the
waiting time contributes about 9% improvement to the total execution
time. Considering the ratio of the barrier time to the total execution time

1.00E+07 1.80E+07
9.00E+06
8.00E+06
7.00E+06
6.00E+06 |- -

| . —&—two-phase barrier
—i— centralized barrier

1.60E+07

1.40E+07 |

1.20E+07

1%
] $ 1.00E+07 |
. . o
5 5.00E+06 - _g—two-phase barrier Q
4.00E+06 I - —m@— centralized barrier © 8.00E+06 |
3.00E+06 c 6.00E+06 [
2.00E+06 I S 4.00E+06
1.00E+06 / 2.00E+06 | :
0.00E+00 = 4004 - R N
N - B S 0.00E+00 + 2
®SPRESCS 4 8 12 16
Grain sizes(number of points) Number of processors

(a) Barrier waiting times in FFT

(8 processors) (b) Increasing rates of barrier waiting times

(4 pocessors ~ 16 processors)

Fig. 12. Barrier waiting times in the FFT program.

Two-Phase Barrier 623

shown in Fig. 5, this improvement is higher than we expected. According to
our observation under using the two-phased barrier, since all processors do
not proceed to the next iteration at the same time, the stall time on the
shared bus for handling cache misses also deceases in the next iteration.
This reduced bus waiting time also contributes to the improvement of the
total execution time.

Figure 12(b) shows the barrier waiting times when the number of pro-
cessors is increased. Each simulation result was measured under the coar-
sest grain size, since it realizes the best performance among all grain sizes
as shown in Fig. 5. When the number of processors increases, the two-
phase barrier enables much lower barrier waiting times than the traditional
centralized barrier scheme. As an example of these measurements, when 16
processors are used, the two-phase barrier decreases the average barrier
waiting time by a factor of 30.3 as compared to the traditional centralized
barrier. This phenomenon results from the fact that the two-phased barrier
provides non-blocking operations to early arriving processors at a decision-
point phase.

3.3.2. LU program

Figure 13(a) shows the barrier waiting times of the LU program. Like
for FFT, the two-phase barrier realizes lower barrier waiting times than the
traditional centralized barrier. The reduction rates of barrier waiting times
are from 68% at grain divisor 1 to 37% at grain divisor 9, with the grain
divisor 1, the reduction of the barrier waiting time improves the execution
time of about 7 %.

2.50E+07

2.50E+07
—&— two-phase barrier
—&— two-phase barrier wop
centralized barrier ~—— centralized barrier
2.00E+07 | i centr . 2.00E407 | :
1.50E+07 | 1.50E+07
[} 0
2 Q@
3 8
1.00E+07 | 1.00E+07 | -
5.00E+06 5.00E+06
PR S STt .
0.008+00 0.00E+00 :
9 8 7 6 5 4 3 2 1 . 6 1 1
Grain sizes(grain divisor) Number of processors
(a) Barrier waiting times in LU (b) Increasing rates of barrier waiting times
(8 processors) (4 processors ~ 16 processors)

Fig. 13. Barrier waiting times in the LU program.

624 Jung, Hyun, Lee, and Ma

Figure 13(b) shows the barrier waiting times when the number of pro-
cessor is increased. All results are measured under the coarsest grain size.
The barrier waiting times gradually grows in both schemes as the number
of processors is increased. However, the increasing rate of the two-phase
barrier is less than the one of the traditional centralized barrier. With 16
processors, the two-phase barrier decreases the barrier waiting time by a
factor of 1.8 as compared to the traditional centralized barrier.

4. RELATED WORKS

There are many different implementations of barriers. A representative
barrier is the centralized barrier based on a global counter.® ' When using
the centralized barrier, each processor arriving at the barrier increments the
counter and then blocks on a single, shared, completion flag. The last-
arriving processor flips the flag, allowing all of the processors to then
proceed. This barrier has been employed in many parallel programs
because of its usable feature. But as the number of processors increases, a
specific point at which all the processors must synchronize causes a high
barrier waiting time. To solve this problem, several studies have shown
how to increase scalability by building barriers based on a point-to-point
communication among processors.!* %19 However, even with a tree-
barrier,' the barrier waiting time increases logarithmically proportionally
to the number of processors.

The topology-barrier is built based on the topology among processors. 1
This barrier needs the adjustable data structures to manage neighbor proces-
sors, and requires a large-scale modification for existing parallel programs.

Rajiv® suggested the fuzzy barrier to reduce the barrier waiting time.
The fuzzy barrier introduced the concept of a barrier region, implying a
region of instructions that can be executed by a processor while it waits
synchronization. Upon reaching the first instruction in the barrier region, a
processor is ready to synchronize and must synchronize before exiting the
region. Processors may be executing different instructions from a specified
range of instructions at the time of synchronization. This mechanism relied
upon the compiler and the hardware to construct the barrier region, and
focused on instruction parallelism.

In a multiprogrammed system, there were studies to explore the
interaction between scheduling strategies and barrier primitives.® %29 Lim
and Agarwal® noted that waiting times at barriers could be reduced if the
program could decide whether it should wait at a barrier or be preempted
based on the number of processors arriving at a barrier. However, this
method needs unreasonable communication costs to track all the proces-
sors on a large-scale machine.

Two-Phase Barrier 625

Markatos'” reported that barriers using the central counter shows
better performance than the tree barrier scheme, since the tree barrier had a
burden to sustain the tree structures in the multiprogramming environ-
ment. They also reported that as long as processors used appropriate
blocking barriers, and assuming that the time between barriers was more
than several times larger than the context switching time, dedicating pro-
cessors to a program was an effective scheduling policy.

Axelrod® suggested the combination barrier that exploits the blocking
scheme among the processes on a given processor and that uses the busy
waiting scheme among processors. However, this barrier had a problem
that led to a uniform policy for all processes, either they all spin-wait or
they all lock-wait.

Kontothanassis® suggested the scheduler information barrier that
built on the combination barrier by using scheduler information to make an
optimal spin versus block decision within processors, and then to adapt to
changes at run time. A blocking synchronization was used until the number
of processes reaching a barrier exceeded the number of processors in the
system, whereas a busy-wait synchronization was used when the number of
processes waiting at a barrier exceeded the number of processors.

In the previous works, several studies reported that the barrier waiting
times were affected by scheduling policies and basic barrier structures.
However, even if the same number of grains is allocated to each processor,
the barrier waiting time can be affected by changes of the control paths and
the cache misses. In this paper, we used detailed simulation studies to
explore the interaction between the grain size and barrier waiting time in
data parallel programs. On the basis of these simulation results, we suggest
a new barrier primitive to enhance processor utilization by adding the new
functionality to the traditional centralized barrier.

5. CONCLUSION

In this paper, to find the sources of the barrier waiting time for paral-
lel processing, data parallel programs were executed on the various grain
sizes, since the grain size affected the cache misses and the control paths,
and they were assumed to be the primary sources of the barrier waiting
time. The simulation results showed that even if the same number of grains
was allocated to each processor in our benchmark programs, the different
cache misses per processor affected the barrier waiting time more than the
variation in the control paths within in the grains.

Another important issue for barrier waiting time was from the lack of
functionality in the traditional barrier scheme. The main missing func-
tionality is that processors reaching barriers can know the status of other

626 Jung, Hyun, Lee, and Ma

processors, especially when they can continue to execute the next iteration
with such knowledge. To solve this problem, we suggested the two-phase
barrier that comprises two stages of synchronization. This proposed scheme
reduces the possibility of waiting at a barrier, since early arriving processors
at a stage can continue their execution if the unarrived other processors pass
through the previous stage. As a result, the two-phased barrier increases the
chance of non-blocking to the processors with different arriving times at a
barrier. Even if the two-phased barrier had the overhead to find the check-
point phase in parallel programs, simulation results showed that the two-
phase barrier significantly reduced the barrier waiting times and that these
reduced times improved the execution times of tested programs.

In the future work, we plan to evaluate the effectiveness of using the
two-phase barrier in more complex parallel programs. We will also inves-
tigate the method to detect the checkpoint phase in parallel programs by
incorporating both the compiler and hardware supports.

ACKNOWLEDGMENT

This work was supported by Brain 21 Project Program by Ministry
of Education & Human Resources Development and National Research
Laboratory Program by Ministry of Information and Communication,
Republic of Korea.

REFERENCES

1. J. Archibald and J.-L. Baer, Cache Coherence Protocols: Evaluation Using a Multi-
processors Simulation Model, ACM Transaction on Computer Systems, 4(4):273-298
(November 1986).

2. T. S. Axelrod, Effects of Synchronization Barriers on Multiprocessor Performance,
Parallel Comput., 4(3):129-140 (1986).

3. H. El-Rewini and T. G. Lewis, Scheduling Parallel Program Tasks onto Arbitrary Target
Machines, Journal of Parallel and Distributed Computing (June 1990).

4. R. Gupta, The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Proces-
sors. In Proc. 3rd Int’l Conf. Architectural Support Progr. Lang. Operat. Syst., pp. 54-63
(April 1989).

5. I. B. Jung and J. W. Lee, Techniques for Improving the Cache Performance in Parallel
Applications. In Eleventh LASTED Int’l Conf. Parallel and Distributed Computing and
Systems (PDCS’99, MIT, Boston), pp. 597-602 (November 1999).

6. L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott, Scheduler-Conscious Synchro-
nization, ACM Transactions on Computer Systems, 15(1):3-40 (February 1997).

7. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing
(Design and Analysis of Algorithms), The Benjamin/Cummings Publishing Company, Inc.
(1994).

8. B. G. Lim and A. Agarwal, Waiting Algorithms for Synchronization in Large-Scale
Multiprocessors, ACM Transactions on Computer Systems, 11(3):256-294 (August 1993).

Two-Phase Barrier 627

9.

10.

11.

12.

13.

14.

15.

16.

B. Lubachevsky, Synchronization Barrier and Related Tools for Shared Memory Parallel
Programming. In Proc. 1989 Int’l Conf. Parallel Processing, pp. 75-179 (August 1989).

E. Markatos, M. Crovella, and P. Das, The Effects of Multiprogramming on Barrier
Synchronization. In Proc. 3rd IEEE Symposium on Parallel and Distributed Processing,
pp. 662-669 (December 1991).

C. McCann, R. Vaswani, and J. Zahorjan, A Dynamic Processor Allocation Strategy for
Multiprogrammed, Shared Memory Multiprocessors, ACM Transaction on Computer
Systems, 11(2):146-178 (May 1993).

J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on
Shared Memory Multiprocessors, ACM Transactions on Computer Systems, 9(1):21-65
(February 1991).

M. L. Scott and M. M. Michael, The Topology Barrier: A Synchronization Abstraction for
Regularly-Structured Parallel Applications, Technical Report Technical Report 605,
Department of Computer Science, University of Rochester (1996).

M. L. Scott and J. M. Mellor-Crummey, Fast, Contention-Free Combining Tree Barriers,
International Journal of Parallel Programming, 22(4):449-481 (August 1994).

J. E. Veenstra and R. J. Fowler, MINT: A Front End for Efficient Simulation of Shared-
Memory Multiprocessors. In Proc. 2nd Int’l Workshop on Modeling, Analysis, and Simu-
lation of Computer and Telecommunication Systems (MASCOTS), pp. 201-207 (January
1994).

T. Yang and A. Gerasoulis, PYRROS: Static Task Scheduling and Code Generation for
Message-Passing Multiprocessors. In The 6th ACM Int’l Conf. Supercomputing (July
1992).

Printed in Belgium

	1. INTRODUCTION
	2. BENCHMARK PROGRAMS AND THEIR PERFORMANCES
	3. TWO-PHASE BARRIER
	4. RELATED WORKS
	5. CONCLUSION
	ACKNOWLEDGMENT

