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Abstract. For the actual Video-On-Demand (VOD) service environ-
ment, we implement a cluster-based VOD server composed of general
PCs and adopt the parallel processing for MPEG movies. For the imple-
mented VOD server, a video block recovery mechanism is designed on
the RAID-3 and the RAID-4 algorithms. However, without considering
the architecture of cluster-based VOD server, the application of these ba-
sic RAID techniques causes the performance bottleneck of the internal
network for recovery. To solve these problems, the new failure recovery
mechanism based on the pipeline computing concept is proposed. The
proposed method distributes the network traffics invoked by recovery op-
erations and utilizes the available CPU computing power of cluster nodes.

1 Introduction

Recent advanced computer and communication technologies have provide eco-
nomically feasible multimedia services such as VOD, digital library and
Education-On-Demand (EOD). Among them, the VOD service is the most
prominent multimedia application. It provides online clients with the video data
of streaming level by guaranteeing the Quality of Service (QoS) metric [1].

In contrary to traditional file servers, VOD servers are subject to real-time
constraints while storing, retrieving and delivering the movie data into the net-
work. Since the ceasing and jittering streaming videos are unmeaningful for
VOD clients, the streaming media should be supplied within the QoS metric to
each client. To support the QoS, servers must be able to continuously deliver
video data at a constant interval to VOD clients. And also, even in the failure
of server components, the streaming service should be re-continued within the
human acceptable Mean Time To Repair (MTTR) value [2,3].

A cluster server architecture has been exploited in the areas of Internet Web,
database, game and VOD server [4]. It has an advantage of the ratio of perfor-
mance to cost and is easily extended from the general PC equipment. The clus-
ter server architecture usually consists of a front-end node and multiple backend
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nodes. Since the video data are distributed into several backend nodes, the per-
formance scalability including the storage devices could be achieved accordingly
as the number of backend nodes increased. However, even if the cluster server
can be scaled by just adding new backend nodes, the probability of the failure
of nodes also increases in proportion to the number of backend nodes.

The fault of nodes causes not only the stop of all streaming service but also
the loss of the position information of current playing movies. Since the VOD
server has to guarantee QoS streams to all clients even in the failure of nodes,
the recover mechanisms are necessary for dealing with a realistic VOD service.
In this paper, the recovery mechanisms in cluster-based VOD servers are studied
to support QoS streams while a backend node is in failure state.

To study the failure events during the actual VOD service, we implement the
cluster-based VOD server composed of general PCs and adopts parallel process-
ing for MPEG media to support large scale clients. From the implemented VOD
server, it is evaluated that a basic recovery system is composed of the advantages
of RAID-3 and RAID-4 algorithms. From experiments, it is found that the basic
recovery system causes the performance bottleneck on the input network of the
recovery node that consume a few computing resource of CPU. To solve these
issues, the new failure recovery system based on pipeline computing is proposed
over all survived backend nodes. The proposed system distributes the network
traffics across all backend nodes. All survived backend nodes are participated
in the recovery operations so that the proposed method provides the improved
performance of cluster-based VOD servers as well as the unceasing streaming
service even in the failure state of a backend node.

The rest of this paper is organized as follows. Sect. 2 explains the implemented
cluster-based VOD server and the management of video blocks in the cluster
architecture. Sect. 3 suggests the basic recovery system mixed the advantages
of RAID-3 and RAID-4 levels and a new recovery mechanism based on pipeline
computing to utilize the resources of backend nodes. In Sect. 4, performances of
two recovery systems are measured and discussed. Sect. 5 concludes the paper.

2 Implemented Cluster-Based VOD Server

For large scale VOD services, we implement a cluster-based VOD server called as
Video On Demand on Clustering Architecture (VODCA). The VODCA consists
of a front-end node named as Head-end Server (HS) and several backend nodes
known as Media Management Server (MMS). Throughout the internal network
path between a HS node and MMS nodes, they exchange the working states and
internal commands each other. The HS node not only receives clients’ requests
but also manages MMS nodes to support QoS. When new MPEG movies are
enrolled, they are split by HS and distributed into each MMS node. To per-
form these administrative functions, the HS consists of striping module, mon-
itoring module, service control module and main daemon module. The MMS
nodes transmit their stored movie fragments to clients under the supervision
of the HS node. Each MMS node sends the current working status to the HS
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node periodically. This message operates as a heartbeat protocol between MMS
nodes and the HS node. Each MMS node consists of media management module,
media service module, resource management module and main daemon module.

To apply parallel processing for MPEG movies, movie files are striped accord-
ing to the defined granularity policy. To exploit MPEG media characteristics in
parallel processing, a GOP size is used as a striping unit, since each GOP has ap-
proximately equal running time in MPEG streams. The MPEG movies are split
into GOPs and distributed into each node with their sequence number and size.

3 Proposed Recovery Systems

From the implemented VOD server of previous section, a video block recovery
mechanism is designed on the RAID-3 and the RAID-4 algorithms. However,
without considering the architecture of cluster-based VOD server, the applica-
tion of these basic RAID techniques causes the performance bottleneck of the
internal network for recovery. To solve these problems, the new failure recovery
mechanism based on the pipeline computing concept is proposed.

3.1 Recovery System on Basic RAID Mechanisms

Fig. 1 shows the architecture of the recovery system based on basic RAID-3
and RAID-4 mechanisms. We denote this recovery model as Recover System
based on Basic RAID Mechanisms (RS-BRM). This system is implemented on
VODCA sever described in Sect. 2. As shown in Fig. 1, two network paths exist:
one is used for connecting between the MMS nodes and the VOD clients, and

Fig. 1. Architecture and video block flows in RS-BRM
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the other is an internal network path installed between all MMS nodes and a
recovery node. When a MMS node fails, the video blocks should be transferred to
the recovery node. These blocks are transferred on the isolated internal network
path. Therefore, the external network path fully focuses on the QoS streams for
clients without interference events.

When all MMS nodes are working normally, all MMS nodes transmit their
stored video blocks to clients directly through the external network path. On
the other hand, when a MMS node fails, the survived MMS nodes send the
video blocks to both the clients and the recovery node. Using the video blocks
received from the MMS nodes and the parity blocks stored in its own disks,
the recovery node regenerates the failed video blocks. Since both MMS nodes
and the recovery node use their internal network path for recovery operations,
the external network bandwidth can support QoS streams to the VOD clients.
For the cluster-based VOD server architecture, we introduce the RAID-4 level
to improve the data retrieving performance, and apply the RAID-3 level to the
cases of data transferring and recovering operations. Since the RAID-3 level can
support smaller stripping units, all video blocks are gradually aggregated in the
recovery node so that the abrupt memory shortage could be avoided. By tailoring
the advantage of the RAID-3 and RAID-4 mechanisms, this mixed approach
improves the performance of recovery system by utilizing the characteristics
of individual hardware components. For example, as shown in Fig. 1, when the
MMS 3 node fails, the recovery node regenerates the video block 3 by calculating
the exclusive OR operation with the received video blocks 1, 2, 4 and its own
parity block. Since the regenerated video block 3 is sent to the corresponding
client via the external network path, the streaming media service is unceased
even in the failure state.

3.2 Recovery System Based on Pipeline Computing

The performance of RS-BRM suffers from the bottleneck of input network on
the recovery node. It has been restricted by the number of MMS nodes. To
address this problem, the new recovery system based on the pipeline computing
is proposed. It is denoted as Recovery System based on Pipeline Computing
Mechanism (RS-PCM). The proposed method distributes the network traffics
for recovery operations into all survived MMS nodes and utilizes the available
CPU computing capacity of MMS nodes.

The exclusive OR operations for video blocks are a major role of parity based
RAID algorithms. To rebuild the video blocks stored in the failure MMS node,
sequential several exclusive OR stages are necessary. For each stage, the two
blocks are needed to compute exclusive OR operation at a time. Based on this
characteristic, the stages are distributed into MMS nodes so that the network
saturation in the recovery node is solved. In addition, the CPU computing power
of MMS nodes can be utilized without impairing the QoS streams.

Fig. 2 shows the architecture of RS-PCM and the flow of video blocks in the
VODCA server. The basic algorithm for data recovery is based on the RAID-4,
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Fig. 2. Architecture and the flow of video blocks in RS-PCM

3 algorithms. As shown in Fig. 2, the RS-PCM distributes the network traffics for
recovery processes, and spreads the exclusive OR operations over all MMS nodes.

When a MMS node fails, survived MMS nodes do not send their video blocks
to the recovery node directly but transmit the original video block or their
own exclusive OR result block to their neighbor MMS node. Each MMS node
performs its own fraction of exclusive OR operation with both the video block
retrieved from its local disk and the block received from its neighbor MMS
node. The blocks received from its neighbor MMS node may be an original
video block stored in the disk or the result of exclusive OR operation processed
on the neighbor MMS node. The results are sent to the neighbor MMS node
successively such as the pipeline process in the instruction level [5].

Finally, the recovery node performs the last exclusive OR operation with its
parity block and the aggregate result of all MMS nodes so that the video block
of the failure MMS node is rebuilt. After that, the regenerated video block is
transmitted to the client through the external network path. For example, as
shown in the Fig. 2, when the MMS node 3 fails, the MMS 1 node sends the
video block 1 to the MMS 2 node. The MMS 2 node performs the exclusive OR
operations with both the video block 1 and the block 2. After that, the result
is sent to the MMS 4 node to perform the exclusive OR operation with the
video block 4. Finally, after the exclusive OR operations for all survived video
blocks are finished, the result is sent to the recovery node. The recovery node
regenerates the video block 3 throughout the exclusive OR operation with the
parity block.

Fig. 3 shows the recovery operations according to the pipeline concept of the
RS-PCM. As a CPU unit executes a step of pipeline to perform an operation in
a cycle, each MMS node executes a step of recovery operation using its idle CPU
in order to recover a failed movie block in a cycle [5]. This parallel processing
for recovering the failed blocks makes a good performance in proposed RS-PCM.
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Fig. 3. Recovery steps based on pipeline concept in RS-PCM

As shown in Fig. 3, the failed MMS 3 node has video block 3, 7, 11, 15, 19, 23.
These blocks are regenerated in the recovery node every cycle according to the
pipeline computing.

4 Performances of Proposed Recovery Systems

The VODCA server for experiments consists of a HS node, 4 MMS nodes and
a recovery node. Each node operates on the Linux operating system. The MMS
nodes, HS node and clients are connected via a 100 Mbps ethernet switch. All
MMS nodes and the recovery node are also connected via the internal network
path constructed by a 100 Mbps ethernet switch. The yardstick program is used
to measure the performance of the implemented cluster-based VOD server [6].
The yardstick program consists of the virtual load generator and the virtual client
daemon. The virtual load generator is located in the HS node and generates client
requests based on the Poisson distribution with λ = 0.25 [7,8]. These requests
are sent to each MMS nodes. After that, all MMS nodes concurrently begin
streaming media services for satisfying the client’s demand.

4.1 Performances of RS-BRM

Fig. 4 shows the amounts of output network traffics transmitted from a MMS
node to all clients in the RS-BRM. The results are the averages of the network
traffics of each MMS node. As shown in Fig 4, the load generator generates six
loads individually. The VODCA server guarantees 1.5 Mbps transmitting rates
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Fig. 4. Output network traffic from a MMS node to all clients

for each QoS stream. The output network traffic of 6 MB/s means that 4 MMS
nodes provide 128 clients with QoS stream.

The failure of a MMS node takes place at 120 second of time line. Under the
1 MB/s, 2 MB/s and 3 MB/s traffics, the variations of network traffics are
minimal after the failing event. However, in the 6 MB/s, 5 MB/s and 4 MB/s
traffics, the fluctuations of network traffics continuously appear in the time line
from the 120 second position. In particular, the severely reduced network traffics
are incurred in the 6 MB/s and 5 MB/s cases. The reason is that the MMS node
can not send the video blocks fully to clients only if the recovery node can not
receive more video blocks due to its input network bottleneck. Under the 5MB/s
and the 6 MB/s loads, the network traffics from 3 MMS nodes to the recovery
node reach to 15 MB/s and 18 MB/s respectively. Since the input network
capacity of the recovery node is limited to 12 MB/s, the recovery node suffers
from the bottleneck phenomenon of input network path.

From the experiments, we also observe that the CPU usage of MMS nodes is
minimal. Since the MMS nodes simply perform the retrieving and transmitting
of their own video blocks, the average CPU utilization is measured below 10 %.

Fig. 5 shows the reading times of one GOP in the client side while the stream-
ing service is in progress. Although the failure time of a MMS node is the 120
second of the time line, the fluctuation of reading times in the client side appears
in the 156 second of the time line. Since the network delay exists from the VOD
server to clients, the time delay takes place due to the buffering mechanism in
the client side.

As shown in Fig. 5, when all MMS nodes work normally, the average reading
time is about 0.65 seconds and it keeps steady state. However, after a MMS node
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Fig. 5. GOP reading time in the client side under RS-BRM

fails, the reading times vary. These variations are due to the packet data loss,
the initial setup time of the recovery node and the data congestion phenomenon
of the recovery node. In particular, the fluctuation rates are high at the 5 MB/s
and 6 MB/s load. In these work loads, the unsteady state of the reading times
comes out between the 156 seconds and the 266 seconds. The difference between
the maximum reading time and the minimum reading time is about 1.18 second.
After the fluctuation period pass through, the recovery node works normally and
the reading times converge into the 0.65 second level again. The MTTR value is
110 seconds [2,3]. It can be regarded as impatient period to VOD clients.

4.2 Performances of RS-PCM

Fig. 6 shows the network traffics in a MMS node and the recovery node when
the 12 MB/s network traffic is loaded in the RS-PCM. The failure takes place at
the 120 second of the time line. As shown in Fig 6, after the failure occurs, the
network traffics from a MMS node to clients decrease from 12 MB/s rates to 9
MB/s rates. The reason is that the video blocks transmitted from the neighbor
MMS node occupy the main memory of the MMS node. If many clients are
serviced, the video blocks from its neighbor MMS node take a great part of
memory. The shortage of memory causes memory swapping overheads. However,
the output traffic to clients in a MMS node is over twofold compared with the
RS-BRM. In Fig. 4, the RS-BRM shows the maximum 4 MB/s traffics due to
the input network bottleneck of the recovery node. In the RS-BRM, even though
the 12 MB/s load is generated, the output traffics to clients is 8MB/s rates. This
experimental result proves that the RS-PCM provides more clients with the QoS
streams than the RS-BSM.
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Fig. 6. Network traffic of a MMS node and a recovery node under 12 MB/s load

The square legend mark of this figure represents the amount of output traffic
toward the neighbor MMS node. In the RS-PCM, if the current MMS node is
not the last MMS node, it transmits its own video blocks or the result blocks of
exclusive OR operation to its neighbor MMS. From the circle legend mark, it is
found that the amount of input traffics from the neighbor MMS node is almost
equal to that of its own output traffics. The amount of input traffics from the
last MMS node reaches the 9 MB/s rates so that the recovery node also can
rebuild the video blocks as much as 9 MB/s rates. After that, the recovery node
transmits them to clients. According to the triangle legend mark of this figure,
the output traffics of rebuilt blocks in the recovery node get to the 9 MB/s rates.

When compared with the RS-BRM, the RS-PCM has better performance as
much as double streams in the same working environment. The memory swap-
ping problem in the RS-PCM could be simply solved by adding memory units.
From additional experiments, after extending the memory capacity, it is con-
firmed that the output network traffics from a MMS node reached the maximum
12 MB/s. However, even if the amount of memory units increase, the internal
network bottleneck of the RS-BRM can not be avoided. Since the RS-PCM
utilizes the available CPU resources of MMS nodes and all MMS nodes are par-
ticipated in the total recovery procedures, it provides the improved performance
of cluster-based VOD servers as well as the unceasing streaming services under
the failure of a MMS node.

Fig. 7 represents the reading times of one GOP in the client side. The exper-
iments are performed on between the 7 MB/s and 12 MB/s loads. The RS-PCM
can support these network traffic loads. The failure of a MMS node takes place
in the 120 seconds position. Since there is the network delay between the server
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Fig. 7. GOP reading time in the clients side under RS-PCM

and clients, the fluctuations of reading time in the client side begin at the 148
seconds and end at the 176 seconds. After the agitation state, the reading times
promptly converge into the steady state with 0.65 seconds levels. The fluctuation
period is 28 seconds.

When compared with the RS-BRM, the period of the fluctuation is very
short. Since the recovery operations are distributed into all MMS nodes, the
recovery node can transmit the rebuilt video blocks in the relatively short time.
As shown in the Fig. 5, after a MMS failure happen, the RS-BRM need 110
seconds to return to the steady state. The fluctuation period of RS-PCM is 4
times shorter than the RS-BRM.

Furthermore, as shown in Fig. 7, the difference between the maximum read-
ing time and the minimum time is 0.68 seconds. This result is the half of the
difference in the RS-BRM. In the RS-PCM, both the period of fluctuations and
the amplitudes of vibration are shorter than those of the RS-BRM. From these
results, the RS-PCM results in much better MTTR value than the RS-BRM [2,3].

5 Conclusions

To study the recovery system in the actual VOD service, we implemented the
cluster-based VOD servers composed of general PCs and the internal network
path. From the implemented VOD server, the RS-BRM was designed with the
advantage of RAID-4 in disk retrieving speed and the advantage of RAID-3 in
effective memory usage. However, in the RS-BRM, it was found that the input
network path of a recovery node was easily saturated with the video blocks
transmitted from the survived MMS nodes.

To address these issues, the RS-PCM based on the pipeline computing was
proposed over the MMS nodes and a recovery node. In the RS-PCM, the recovery
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node generated a rebuilt video block and sent it to the client just one time for
each cycle. This mechanism is similar to the pipeline process of instructions. The
RS-PCM made an efficient use of the available CPU resource of MMS nodes
since all survived MMS nodes were participated in the recovery procedures to
rebuild the impaired video blocks. Based on this pipeline computing, the RS-
PCM distributed not only the computation load for exclusive OR operation
but also the network traffics across all MMS nodes. From the experiments, we
observed the network traffics across all MMS nodes. Even in the failure state of
a MMS node, the RS-PCM showed the improved performance by providing at
least twice unceasing QoS streams compared to the RS-BRM.

One of the important characteristics in VOD service is that the streaming
media with ceasing, jittering and out of ordered frames are not meaningful.
This requirement is deserved even in the partial failure state of VOD server.
To satisfy this characteristic, after a failure takes place, the fluctuation period
should be short. In the GOP reading times in the client side, the RS-PCM showed
the 4 times shorter fluctuation period than the RS-BRM. Due to the relatively
short fluctuation period, the streaming media service quickly converged into the
normal steady state. As a result, the RS-PCM resulted in much better MTTR
value than RS-BSM.

In future work, we plan to evaluate the effectiveness of RS-PCM in the failure
of a portion of disks in a MMS node. In that case, since the impaired MMS node
can send its heart beat, it is difficult to detect the abnormal MMS node from the
point of view of the HS node. And also, there are several issues that the MMS
node with the partly failed disks will be participated in the recovery operation.
We will investigate the method to detect the partial disk failure from MMS nodes
and apply the RS-PCM to the imperfect cluster-based VOD server.
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