
Abstract

The main memory DBMS(MMDBMS) efficiently
supports various database applications that require
high performance since it employs main memory
rather than disk as a primary storage. In this
paper, we discuss the cache-conscious index
manager of the Tachyon, a next generation
MMDBMS. The index manager is an essential
sub-component of a DBMS used to speed up the
retrieval of objects from a large volume of a
database in response to a certain search condition.
Recently, the gap between the CPU processing and
main memory access times is becoming much wider
due to rapid advance of CPU technology. By
devising data structures and algorithms that utilize
the behavior of the cache in CPU, we are able to
enhance the overall performance of MMDBMSs
considerably. In this paper, we address the
practical implementation issues and our solutions
for them obtained in developing the cache-conscious
index manager of the Tachyon. The main issues
touched are (1) consideration of the cache
behavior, (2) compact representation of an index
entry, (3) support of variable-length keys, (4)
support of multiple-attribute keys, (5) support of
duplicated keys, and (6) definition of the system
catalog for indexes. We also show the
effectiveness of our approach through extensive
experiments.

1. Introduction

Recently, real-time systems are expanding their
application areas thanks to ever-growing computer
technology. One of the promising approaches to
manage real-time data is to replace disk with faster
main-memory for their storage[22]. The
Main-Memory Data Base Management System
(MMDBMS) uses main memory as a primary
storage for eliminating the cost of disk accesses,
which have been known as the main performance
bottleneck of disk-based DBMS[2][5][8].

The Real-time DBMS Team at Electronics &
Telecommunications Research Institute and Data &
Knowledge Engineering Lab. at Kangwon National
University in Korea have been working together to
develop the Tachyon, a next generation
MMDBMS[2][8]. The Tachyon supports a deadline
concept because it considers real-time applications
as its major target. The Tachyon employs
main-memory as a primary storage for performance
reasons and hires the object-relational data model to
accommodate diverse applications easily.

An index manager in a DBMS supports the fast
retrieval of target objects that satisfy a query
condition from a database. To facilitate this
functionality, the index manager chooses one or
more attributes as a key and builds an index from
them. There have been many research efforts to
devise efficient index structures for database
systems. The binary search tree[14], AVL-tree[14],
T-tree[15], B-tree[4], CSS-tree[19], and
CSB

+
-tree[20] are the typical examples.

Previous research efforts mainly focus on
designing efficient index structures appropriate for
their own application domains. However, they
rarely dealt with the practical issues occurred in
implementing an index manager on a target DBMS.
In this paper, we investigate design and
implementation issues experienced in developing the
index manager of the Tachyon.

The main issues discussed in this paper are: (1)
consideration of the cache behavior, (2) compact
representation of an index entry, (3) support of
variable-length keys, (4) support of
multiple-attribute keys, (5) support of duplicated
keys, and (6) definition of system catalog for
indexes.

The paper is organized as follows. Section 2
briefly reviews the characteristics, overall
architecture, and major components of the Tachyon.
Section 3 introduces previous index structures and
addresses their strong and weak points. Section 4
introduces the characteristics of the cache and the

Design and Implementation of a Cache-Conscious Index Manager for
the Tachyon, a Main Memory DBMS

Kyung-Tae Lee, Inbum Jung, Chang-Yeol Choi

Department of Computer, Information, and Communications
Kangwon National University, Korea

mlogue@nate.com, ibjung@kangwon.ac.kr, cychoi@kangwon.ac.kr

Wan Choi

Division of Computer Systems
Electronics and Telecommunications Research Institute, Korea

wchoi@etri.re.kr

Sang-Wook Kim

School of Information and Communications
Hanyang University, Korea
wook@hanyang.ac.kr

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

cache-conscious index adapted as an index structure
in the Tachyon. Section 5 presents our strategies
in developing the index manager of the Tachyon in
detail. Section 6 summarizes and concludes the
paper.

2. Tachyon

The Tachyon is a real-time MMDBMS that
supports an object-relational model. Figure 2.1
shows the overall system architecture of the
Tachyon. The main-memory manager is in charge
of a main-memory pool. It allocates
variable-length main-memory chunks from the pool
and deallocates unnecessary chunks to the pool.

Figure 2.1. Overall system architecture.

Main-Memory Manager

Index Manager Object Manager Concurrency

Control

Manager

Backup

and

Recovery

Manager

Query Processor
Transaction

Manager

Main-Memory Disk

The object manager stores and manages user
data in the form of objects. A fixed-length main
memory unit, called partition, stores one or more
objects. The index manager speeds up the retrieval
of qualified objects from a database. To facilitate
this, the index manager selects one or more
attributes as a key and builds an index from them.
In multi-user environment, several transactions run
concurrently. The concurrency control manager
guarantees the logical and physical consistency of a
database by controlling the execution orders of such
transactions. The backup and recovery manager
detects various transaction failures or system
failures, and restores a database to a consistent
state. Finally, the query processor optimizes
declarative SQL-based queries[6] and converts it to
a series of lower-layer function calls.

3. Index Structures

3.1. Tree-based indexes

Since tree-based indexes traverse down a tree to
locate an object, their performance for exact-match
queries is worse than that of hashing-based indexes.
However, tree-based indexes show much better
performance for range queries because index entries
having adjacent key values can be easily accessed
with a sorted order.

The binary search tree[12] has a simple
structure. Since the binary search tree is not
balanced, however, its search performance heavily
depends on the distribution of key values and the
insertion/deletion orders of objects.

The AVL-tree[14] is a balanced binary tree in
that the difference in the heights of the two
subtrees of any node is at most one. It maintains
the simple structure of the binary search tree and
also accomplishes the balancing property using the
rotation operation. The biggest problem of the
AVL-tree, however, is its storage overhead[15].

The T-tree[15] solves the storage overhead of
the AVL-tree. While the T-tree uses the structure
and the balancing scheme that are identical to those
of the AVL-tree, it stores multiple entries in a
node. As a result, storage overhead for each key
entry gets much smaller.

The B
+
-tree[4] is a completely balanced index

structure widely used in disk-based DBMSs. It
maximizes the fan-out of a node to reduce the
height of a tree, and thus minimizes the number of
disk accesses in the tree traverse.

The CSB
+
-tree[20], which was developed by

considering the cache behavior, is a variant of the
B

+
-tree. The B

+
-tree stores (number of key values

+ 1) child node pointers in each internal node, but
the CSB

+
-tree stores all the child nodes of any

given internal node in contiguous memory space,
and keeps only its first child pointer. The rest of
the child nodes can be found by adding their
offsets to that pointer. Because the number of key
values stored in a node of the CSB

+
-tree is larger

than that in a node of the B
+
-tree, search

performance of the CSB
+
-tree improves

significantly.

3.2. Hashing-based indexes

Hashing-based indexes compute the position of
an object directly from its key value. Therefore,
they have better performance in processing
exact-match queries compared with tree-based
indexes. However, they show worse performance
in processing range queries.

The chained-bucket hashing[14] uses a fixed-size
hash table, and thus shows good search
performance only when it has a hash table that is
optimal to a given database. When the hash table
is too small, overflow buckets degrade search
performance. On the contrary, a hash table wastes
storage space when it is too large. In dynamic
environment, however, it is not easy to estimate an
optimal size for a hash table.

The extensible hashing[7] consists of data pages
and a directory. Data pages store data objects and
a directory stores pointers to data pages. The
directory has 2

k
(k=0,1,...) pointers. The directory

adapts to dynamic environment by splitting and
merging. When the number of pointers stored in a
directory exceeds its capacity, the directory doubles.
Therefore, the extensible hashing seriously wastes
storage space for its directory when most objects
are concentrated in a few data pages.

The linear hashing[16] also has a dynamic
structure. It maintains data pages in physically
contiguous space, thus makes page addressing
simple by calculation without the directory. The
linear hashing permits overflow chains, which may
cause search performance to degrade. Whenever

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

necessary, it splits data pages in a pre-defined
order, resulting in high space utilization.

Lehman et al.[15] modifies the linear hashing to
be suitable for MMDBMSs. The directory is
re-introduced in locating data pages for making it
unnecessary to store data pages in physically
contiguous pages. Since the modified liner hashing
does not allocate empty pages, it has space
utilization much better than the extensible hashing.

3.3. Our choice for Tachyon

The CSB
+
-tree has the balancing property and

also small storage space overhead. The balancing
property enables us to guarantee good search
performance regardless of the key distribution and
the insertion/deletion orders of objects. Since the
CSB

+
-tree stores multiple entries in a node, its

storage overhead is small. Dynamic allocations and
deallocations of nodes make the CSB

+
-tree adapt to

dynamic situations. The CSB
+
-tree performs well

for range queries, and is also capable of processing
exact-match queries via tree traversal.

For these reasons, we chose the CSB
+
-tree as an

index structure in the Tachyon for both exact-match
and range queries. By employing a single index
structure for both exact-match and range queries,
we have enjoyed an additional advantage of making
other sub-components such as the concurrency,
backup, and recovery managers much simpler.

4. Cache-Conscious Index

4.1. Cache

The cache memory is a small fast static RAM
that speeds up running of processes by holding
recently referenced data within it[21]. The cache
block is a basic transferring unit between the cache
and main memory, and its typical size ranges from
32 bytes to 128 bytes.

When memory references are satisfied by the
cache, we say the cache hits to occur. In this
case, the process proceeds at the CPU speed. In
contrast, when memory references are not satisfied
by the cache, we say the cache misses to occur.
In cases of the cache misses, the process proceeds
at the memory speed since it has to fetch the
corresponding cache block from main memory.

The traditional assumption widely-accepted in the
area of computer architecture was that the costs of
memory references are almost the same independent
of their locations. However, this assumption is no
longer valid due to the big speed gap between
cache and main memory. Reference [1] studied
the performance of several commercial DBMSs in
main memory. The conclusion they reached was
that a significant portion of execution time is spent
on cache misses. Therefore, making the cache hit
ratio higher would be a imperative task in
MMDBMSs[21].

4.2. CSB
+
-tree

The CSB
+
-tree[20], which was developed by

considering the cache behavior, is a variant of the

B
+
-tree. Every node in a CSB

+
-tree of order d

contains m keys, where d <= m <= 2d. The
CSB

+
-tree stores all the child nodes (we call them

a node group) of any internal node in a contiguous
memory space, and keeps only the first child
pointer in each internal node. The rest of child
nodes in a node group can be found by adding
their offsets to the first child pointer.

Since the internal node in the CSB
+
-tree stores

only one child node pointer, it stores a more
number of key values than the B

+
-tree. This

feature provides two advantages. First, this feature
incurs a smaller number of cache misses than the
B

+
-tree in index searching. This is because the

CSB
+
-tree has more key comparisons in a node

than the B
+
-tree. Second, because the fan-out of

each internal node gets larger, the CSB
+
-tree uses

storage space less than the B
+
-tree.

Figure 4.1 depicts an example of the CSB
+
-tree

of order 1. Each dashed box represents a node
group. The arrows from internal nodes represent
the first child pointers. All the nodes within a
node group are stored physically adjacent to one
another in memory space.

Figure 4.1. A CSB
+
-tree of order 1[Rao00]

5. Development of Index Manager in
Tachyon

5.1. Entry structure

Reference [13] proposes to store only an object
address without maintaining its key value in an
index entry. This method is feasible in that we
can easily access the key value from the object in
main memory by using the object address.
However, it deteriorates the performance of search,
insertion, deletion operations since every object
access incurs a cache miss.

For resolving this problem, we adopt the
approach to store a key value on an entry in this
implementation. Thus, an entry has a form of
<key value, object address>. Compared with the
method in [13], this approach incurs a large storage
overhead, and also makes the complexity of DBMS
algorithms get higher. However, it achieves the
high performance of search, insertion, deletion
operations by avoiding additional cache misses in
key comparisons.

A key is called a variable-length key[10] when
the lengths of key values are variable depending on
objects. In case of the variable-length key, each
key value is represented as <length, attribute value>

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

in an index entry. In case of the fixed-length key,
the lengths of key values are identical in all
objects. Thus, only <attribute value> is stored
without the length field in an index entry.

The multiple-attribute key[10] is defined as a
key that consists of more than one attribute. If an
attribute is of variable-length, it is represented as
<length, attribute value>. Otherwise, only
<attribute value> is kept without the length field.

The duplicate key[10] allows different objects
have the same value for that key. In case of the
duplicate key, an entry consists of <key value, list
of object addresses>. It is possible for an entry to
get larger than a node due to so many duplicates
of the same key value. In this case, the chain of
overflow nodes is introduced, which will be
elaborated in Section 5.2.

5.2. Node structure

The CSB
+
-tree is composed of three types of

nodes: the internal, leaf, and overflow nodes.

The internal node has the structure of <data[],
p0, nEntries, freeOffset, type>. data[] stores index
entries, and occupies all the space of a node
except for p0, nEntries, freeOffset, and type. p0
points to the first child of this node. nEntries
represents the number of entries currently stored in
this node. freeOffset indicates the offset from
which the contiguous free space starts in the node.
Finally, type has a value of INTERNAL, which
indicates the type of this node. Normally, a cache
block is smaller than or equal to 256 bytes. Thus,
we hire "unsigned char" type of one byte for
nEntries, freeOffset, and type fields for space
optimization.

In case of the ordinary B
+
-tree, there are slot[i]

fields in a node[10]. Each slot[i] corresponds to
an index entry, and has the offset from which the
entry starts in the node. The reason for using
slot[i] is that it enables the binary search even in
case of variable-length keys[10]. However, this
employing of slot[i] makes the number of entries
stored in a node get smaller, thus increases the
number of cache misses in tree traversal.

In our implementation, we do not hire the
slot[i] concept for this reason. In case of
fixed-length keys, we are able to perform the
binary search in a node. In case of variable-length
keys, however, we have to perform the linear
search in a node. The linear search is more costly
than the binary search. However, we note that the
number of index entries in a cache block is not
that large, and also the linear search in the node
performs within the cache rather than main
memory. Therefore, the cost of the linear search
is not that serious compared with that of the cache
miss.

The leaf node has the structure of <data[],
nEntries, freeOffset, (prefixLen), prevNode,
nextNode, type>. The fields data[], nEntries,
freeOffset, and type are used for the same purpose
as in the internal node. type has a value of
LEAF, which indicates the type of this node.
prevNode and nextNode are pointers for keeping all

the leaf nodes as a doubly-linked list. (prefixLen)
is used only for variable-length keys, and is the
size of the common prefix of the key values in a
node. So, the common prefix is stored once in a
node, and only the remaining part is stored in each
entry. This is to reduce the number of cache
misses by raising storage utilization. Especially,
this effect of performance improvement gets higher
as a database becomes larger. As in the internal
node, we hire "unsigned char" type of one byte for
nEntries, freeOffset, (prefixLen), and type fields for
space optimization.

The overflow node has the structure of <data[
], prevNode, nextNode, freeOffset, type>. The
fields data[], freeOffset, and type are used for the
same purpose as in the leaf node. type has a
value of OVERFLOW, which indicates the type of
this node. prevNode and nextNode are pointers for
keeping all the overflow nodes as a doubly-linked
list. As in the internal node, we hire "unsigned
char" type of one byte for freeOffset and type
fields.

5.3. System catalog information for CSB
+
-tree

For key comparisons, however, we need to
know which attributes in an object comprise a key.
For this purpose, the system catalog maintains
useful information on the CSB

+
-tree in CSBtreeInfo

as <UorD, root, numAttributes, attrDesc[0],
attrDesc[1], ..., attrDesc[MAX-1]>.

The field UorD indicates whether a duplicate
key is allowed or not. The field root stores the
pointer to the root node of the CSB

+
-tree and the

field numAttributes the number of organizing
attributes. CSBtreeInfo also stores the information
on each organizing attribute in the field attrDesc[i].
As a result, the multiple-attribute key, which is
defined as a key that consists of more than one
attribute, are easily supported. Each organizing
attribute is described by the three fields <offset,
size, dataType>. The field offset is the starting
position of an attribute within an object. The
fields size and dataType are the maximum size and
data type of the attribute, respectively. The
comparison for the multiple-attribute key is
performed by repeatedly comparing all the
organizing attributes that comprise the key.

6. Performance Evaluation

6.1. Experiment environment

The hardware platform used in our experiments
is a Sun-Ultra-10 workstation equipped with
UltraSparc-IIi processor of 440 MHz speed, 2
Mbytes cache, and 1 Gbytes main memory. The
software platform is the operating system of SunOS
5.7 with C++ compiler of g++ 3.0.1. As the
competitor of the CSB

+
-tree manager, we used the

T-tree manager employed in our previous version
of the Tachyon. In both cases, we adopted the 64
bytes nodes in the experiments which have the size
same as that of a cache block. We evaluated the
time performance by performing insertion, deletion,
and search operations on one million key values.

6.2. Results and analyses

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Figures 6.1 shows the results of performing
insertions, exact-match queries, range queries in
case of the fixed-length(4 byte integer),
single-attribute, and non-duplicate key. Figure
6.1(a) shows the insertion times when we insert
1,000,000 key values in steps of 200,000 key
values. The result reveals that our CSB

+
-tree

manager achieves about 1.8 times speedup in
insertions over the T-tree manager. This
performance improvement of our CSB

+
-tree manager

is due to the smaller number of cache misses
occurred in each insertion. The two major reasons
of this are summarized as follows: (1) The
CSB

+
-tree is inherently cache-conscious since it has

only one child pointer p0; (2) Key comparisons in
a node do not incur additional cache misses in our
CSB

+
-tree since the node stores the key values

within it. Figure 6.1(b) shows the search times
when we perform 100,000 exact-match queries on
200,000, 400,000, 600,000, 800,000, and 1,000,000
key values. The result reveals that our CSB

+
-tree

manager achieves about 1.8 times speedup in
exact-match queries over the T-tree manager.
Figure 6.1(c) shows the search times when we
perform range queries with changing selectivities of
5%, 10%, 15%, and 20% on 1,000,000 key values.
The result reveals that the performance of our
CSB

+
-tree manager is about 1.6 times better than

that of the T-tree manager.

Figures 6.2 shows the results of performing
insertions, exact-match queries, range queries in
case of the variable-length(7~10 byte character
string), single-attribute, and non-duplicate key.
Figure 6.2(a) shows the times spent in inserting
200,000, 400,000, 600,000, 800,000, and 1,000,000
key values into each tree. The result implies that
our CSB

+
-tree manager runs about 1.5 times faster

than the T-tree manager. Figure 6.2(b) shows the
times spent in performing 100,000 exact-match
queries on 200,000, 400,000, 600,000, 800,000, and
1,000,000 key values. Our CSB

+
-tree manager is

shown to perform about 1.7 times faster than the
T-tree manager. Figure 6.2(c) shows the times
spent in performing 100,000 range queries with
changing selectivities of 5%, 10%, 15%, and 20%
on 1,000,000 key values. We see that the
performance of our CSB

+
-tree manager is about 1.5

times better than that of the T-tree manager.

Figures 6.3 shows the results of performing
insertions, exact-match queries, range queries in
case of the fixed-length(4 byte integer),
multiple-attribute, and non-duplicate key. Figure
6.3(a) shows the times spent in inserting 1,000,000
key values with different numbers of organizing
attributes into each tree. As the number of
organizing attributes increases, the performance of
our CSB

+
-tree manager decreases while there are

no changes in that of the T-tree manager.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

The reason for this is summarized as follows:
multiple organizing attributes make the length of
the index entry in our CSB

+
-tree manager increase,

and subsequently make the height of the CSB
+
-tree

get higher. This has the tree traversal and node
splitting take more times. On the other hand, the
number of organizing attributes does not affect the
length of the index entry in the T-tree manager
since key values are not stored in an index entry.
Thus, the insertion performance is kept constant
regardless of the number of organizing attributes.

Figure 6.3(b) shows the times spent in
performing 100,000 exact-match queries on
1,000,000 key values with changing number of
organizing attributes. The result is nearly identical
to that in Figure 6.3(a). Figure 6.3(c) shows the
times spent in performing 100,000 range queries
with selectivity of 5% on 1,000,000 key values
with changing number of organizing attributes. We
observe that the result is quite similar to those in
Figures 6.3(a) and 6.3(b).

7. Conclusions

MMDBMSs provide a promising solution to
improve DBMS performance by replacing disk with
main memory as storage media. Recently,
MMDBMSs are expanding their application areas
owing to fast growth of main memory technology.
The index manager is an essential DBMS
sub-component that supports the fast retrieval of
target objects. This paper has investigated practical
issues experienced in developing the index manager
of the Tachyon, and has proposed our approaches
to them. The main issues discussed are: (1)
consideration of the cache behavior, (2) compact
representation of index entries, (3) support of
variable-length keys, (4) support of
multiple-attribute keys, (5) support of duplicate
keys, and (6) definition of system catalog for
index. We have also verified the efficiency of our
approach via extensive experiments.

Acknowledgment

Sang-Wook Kim was supported by the 2002
Basic Research Program(Grant No.
R05-2002-000-01085-0) of the Korea Science &
Engineering Foundation(KOSEF) and also by the
research fund of Hanyang University(HY-2003).
Inbum Jung was partially supported by 2003
Basic Research Program(Grant No.
R05-2003-000-12146-0) of the Korea Science &
Engineering Foundation(KOSEF). This work was
also partially supported by the Brain Korea 21
Project in 2003 through Kangwon National
University. Sang-Wook Kim would like to thank
Jung-Hee Seo, Suk-Yeon Hwang, Grace(Joo-Young)
Kim, and Joo-Sung Kim for their encouragement
and support.

References

[1] A. Ailamaki, D. j. DeWitt, M. D. Hill, and D. A.
Wood, "DBMSs on a Mordern Processor: Where
Does Time Go?," In Proc. Intl. Conf. on Very
Large Data Bases, VLDB, pp. 266-277, 1999.

[2] A. Ammann, M. Hanrahan, and R. Krishnamurthy,

"Design of a Memory Resident DMBS," Proc. Intl.
Conf. on COMPCON, Feb. 1985.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, 1987.

[4] D. Comer, "The ubiquitous B-Trees," ACM
Computing Surveys, Vol. 11, No. 2, pp. 121-137,
1979.

[5] D. DeWitt et al., "Implementation Techniques for
Main Memory Database Systems", Proc. Intl, Conf.
on Management of Data, ACM SIGMOD, pp. 1-8,
1984

[6] R. Elmasri and S. B. Navathe, Fundamental of
Database Systems, Second Edition,
Benjamin/Cummings Publishing Company, 1994.

[7] R. Fagin et al., "Extensible Hashing: A Fast Access
Method for Dynamic Files," ACM Trans. on
Database Systems, Vol. 4, No. 3, pp. 315-344,
1979.

[8] H. Garcia-Molina and K. Salem, "Main Memory
Database Systems: An Overview," IEEE Trans. on
Knowledge and Data Engineering, Vol. 4, No. 6,
pp. 509-516, 1992.

[9] J. Gray et al., "Granularity of Locks in a Shared
Database," Proc. Intl, Conf. on Very Large Data
Bases, VLDB, pp. 428-451, Sept, 1975.

[10] J. Gray and A. Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufman
Publishers, 1993.

[11] T. Haeder and A. Reuter, "Principles of
Transaction-Oriented Recovery," ACM Computing
Surveys, Vol. 15, No. 4, pp. 287-317, Dec. 1983.

[12] E. Horowitz, S. Sahni, and S. Freed, Fundamentals
of Data Structures in C, Computer science Press,
1993.

[13] S. Kim et al., "Design and Implementation of the
Index Manager in the Main Memory DBMS," In
Proc, Intl, Symp. on Database and Applications(DBA
2002), pp. 473-478, 2002.

[14] D. Knuth, The Art of Computer Programming,
Addison-Wesley, 1973

[15] T. Lehman and M. Carey, "A Study of Index
Structures for Main Memory Database Management
System," Proc. Intl. Conf. on Very Large Data
Base, VLDB, pp. 294-303, Aug. 1986.

[16] W. Litwin, "Linear Hashing: A New Tool For File
and Table Addressing," Proc. Intl. Conf. on Very
Large Data Bases, VLDB, pp. 212-223, 1980.

[17] C. Mohan and F. Levine, "ARIES/IM: An Efficient
and High Concurrency Index Management Method
Using Write-Ahead Logging," IBM Research Report
RJ 6846, 1989.

[18] C. Mohan et al., "ARIES: A Transaction Recovery
Method supporting Fine-Granularity Locking and
Partial Rollbacks Using Write-Ahead Logging," ACM
Trans. on Database Systems, Vol. 17, No. 1, pp.
94-162, Mar. 1992.

[19] J. Rao and K. A. Ross, "Cache Conscious Indexing
for Decision-Support in Main Memory," In Proc.
Intl. Conf. on Very Large Data Bases, VLDB, pp.
78-89, 1999.

[20] J. Rao and K. A. Ross, "Making B+-Trees Cache
Conscious in Main Memory," In Proc. Intl. Conf.
on Management of Data, ACM SIGMOD, pp.
475-486, 2000.

[21] A. J. Simith, "Cache Memories," ACM Computing
Surveys, Vol. 14, No. 3, pp. 473-530, 1982.

[22] S. H. Son(Editor), Special Issue on Real-Time
Database Systems, ACM SIGMOD Record, Vol. 17,
No. 1, Mar. 1988.

[23] J. S. M. Verhofstad, "Recovery Techniques for
Database Systems," ACM Computing Surveys, Vol.
10, No. 2, pp. 167-195, Dec. 1978.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

