Int J Parallel Prog (2009) 37:175-194
DOI 10.1007/s10766-008-0092-3

Recovery Strategies for Streaming Media Service
in a Cluster-Based VOD Server with a Fault Node

Joahyoung Lee - Inbum Jung

Received: 24 October 2006 / Accepted: 4 December 2008 / Published online: 1 January 2009
© Springer Science+Business Media, LLC 2008

Abstract Due to the economic cost and good scalability, cluster-based server
architecture is used for VOD services. This server consists of a front-end node and
multiple backend nodes. In this server architecture, backend nodes are added simply
to support large-scale on-demand clients. However, as the number of backend nodes
increases, the possibility of backend node failure also increases. A backend node
fault not only degrades the quality of serviced streaming media but also decreases
the number of streams supported in the VOD server. For successful VOD service,
even if a backend node enters a fault state, the streaming service in progress should
be re-continued after a short recovery time. As the recovery strategy, when legacy
RAID methods are applied to cluster-based VOD servers, the excessive internal net-
work traffic between the backend nodes causes performance degradation. In addition,
the backend nodes demonstrate inefficient CPU utilization for the recovery process.
In this paper, to address these problems, a new fault recovery strategy is proposed
based on the pipeline computing concept. The proposed method not only distributes
the network traffic generated from the recovery operations but also makes efficient use
of the CPU time available in the backend nodes. Based on these advantages, even if
the cluster-based server has a backend node that fails, the proposed method provides
more QoS streams compared to the existing recovery method. In addition, since the
proposed method needs a very short recovery time, the streaming services in progress
are sustained without degradation of media quality.

Keywords Cluster server - Recovery - Pipeline computing - Streaming service

J. Lee - 1. Jung (&)

Department of Computer Science and Engineering, Kangwon National University,
Chuncheon 200-701, South Korea

e-mail: ibjung @kangwon.ac.kr

J. Lee
e-mail: jinnie4du @kangwon.ac.kr

@ Springer

176 Int J Parallel Prog (2009) 37:175-194

1 Introduction

Based on recent advanced computer and communication technologies, commercial
multimedia services such as Video-On-Demand (VOD), digital library and e-learning
have been provided for online clients. In these multimedia services, the VOD service is
the most highlighted multimedia application. It provides online clients with streaming
media stored in VOD servers (http://www.mpeg.org) [1]. Contrary to traditional file
servers, VOD servers are subject to real-time constraints for retrieving and delivering
movie data to clients. For successful commercial VOD services, the streaming media
should satisfy the designated QoS criteria such as the no-jittering phenomenon and
the right bit rates for clients. In particular, even if a fault event occurs in servers, the
streaming service should continue within acceptable human Mean Time to Repair
(MTTR) values [2,3].

The cluster system architecture has been exploited in the areas of web, database,
game and VOD servers [7]. It has an advantage of the ratio of performance to cost and
is easily implemented with PC equipment. The cluster system consists of a front-end
node and multiple backend nodes. All the nodes have the same hardware specifications
or not. In order to use this system as the server architecture for VOD services, MPEG
video data should be distributed to multiple backend nodes. To support client requests,
the backend nodes concurrently transmit stored video data to clients. For large-scale
VOD services, the backend nodes not only store varied video content but also provide
sufficient QoS streams. To satisfy these requirements, the addition of backend nodes
could be considered. However, as the number of backend nodes increases, the fault
rate of the backend nodes also increases. A backend node can fail due to various rea-
sons, such as hard disk failure, a network malfunction, OS failures and so on. A failed
backend node not only degrades the quality of the serviced streaming media but also
decreases the number of QoS streams supported in the VOD servers. Since a failed
node causes low video quality such as jittering phenomena and low bit rates below the
expected level, such events keep VOD services from being commercially successful.
To deal with a realistic VOD service, the recovery mechanism for treating the fault
event should be designed in the VOD servers.

To study the recovery methods of failed backend nodes, we implement a cluster-
based VOD server composed of general PCs. Based on the cluster-based architecture,
we adopt parallel processing for MPEG media to support a large number of clients.
From the implemented VOD server, we evaluate a traditional recovery system com-
posed of the advantages of RAID-3 and RAID-4 algorithms. Since these RAID algo-
rithms are known for providing a very high-speed data transfer rate, they are suitable
for VOD servers treating video streaming. In this paper, the basic concept of these
legacy algorithms is introduced as the recovery mechanism of the cluster-based VOD
server. However, this recovery system causes an input network bottleneck in the recov-
ery node and demonstrates inefficient CPU usage in backend nodes. To address these
issues, we propose a new recovery strategy based on the pipeline computing concept.
Since the proposed method distributes the recovery workload composed of exclusive-
OR operations, the utilization of CPU resources in backend nodes could be perfectly
balanced. This effect alleviates the bottleneck problem invoked in the input network
port of a recovery node. In our implemented cluster-based VOD system, even if a

@ Springer

http://www.mpeg.org

Int J Parallel Prog (2009) 37:175-194 177

backend node fails, the new recovery method provides more QoS streams compared
to the existing recovery method. In addition, since the proposed method has a very
short MTTR value, the streaming services in progress are sustained without degrada-
tion of media quality. Due to these advantages, the proposed recovery strategy could
be applied in VOD service for large-scale on-demand clients.

The rest of this paper is organized as follows. Section?2 describes related work.
Section 3 explains our cluster-based VOD servers and the recovery methods based
on RAID-3 and RAID-4. In Sect.4, a new recovery strategy based on pipeline com-
puting is proposed. Section 5 describes the experimental environments. In Sect. 6, the
performance evaluation is shown. Section 7 concludes the paper.

2 Related Work

Many studies have been undertaken on VOD systems to provide a stable service for
more clients under various client requirements and limited resources [4—6]. For a
commercially successful VOD service, even if the partial failure state occurs, media
streaming should be sustained to clients within the limited MTTR values. The human
acceptable MTTR value is an important QoS metric for outstanding VOD service.
There has been much research in the area of fault tolerance for normal files, databases
and web servers. However, streaming media need real-time processing in the data
retrieving and transmission procedure. Until now, there have not been enough studies
to sustain the QoS streams in the partial failure condition of VOD servers.

Based on the mirror concept, several studies have been performed regarding recov-
ering failed storage systems [7,8]. The Tiger video server was implemented in the
mirror-based storage system for VOD service [9]. Rotational Mirrored Declustering
(RMD) techniques were suggested for recovering failed disks or individual nodes [10].
However, these mirror-based approaches use disk storage inefficiently and incur the
heavy burden of the recovery node.

Redundant Array of Inexpensive Disks (RAID) mechanisms are usually exploited
to recover the failed disks or parallel nodes in clustered servers. In particular, the
RAID-3, 4 and 5 mechanisms are based on the parity-based recovery algorithm [8,
11,12]. In RAID-3, the data blocks are striped and written on the disks. Due to the
fine striped unit, numerous disk accesses are necessary to retrieve large video blocks.
This characteristic degrades the data transfer rate from the disks. In RAID-4, the entire
blocks are stored in a disk. Since this method provides a coarse striped unit, disk per-
formance can be improved by retrieving larger blocks during every disk access. Both
RAID-3 and RAID-4 have their own parity disks used in the recovery procedure. How-
ever, RAID-5 spreads out the parity blocks of the same rank across all disks. When a
backend node fails, all remaining backend nodes participate individually in the com-
plete recovery operations. However, since the parity blocks are distributed to all disks,
to exchange these blocks, the network traffic between backend nodes greatly increases.
Furthermore, since the actual load of the backend nodes cannot be estimated in real
time, steady QoS streams cannot be sustained during the failure of a backend node.

Recently, cluster server architecture has been used for various areas due to its
low cost and high performance http://www.ieeetfcc.org. In particular, for the QoS

@ Springer

http://www.ieeetfcc.org

178 Int J Parallel Prog (2009) 37:175-194

of streaming media, a real-time requirement for the data retrieving and transmission
process is necessary. Even if a backend node fails, the irregular ceasing and jittering
phenomena of streaming media should be solved within the human acceptable MTTR
period [2,3]. Therefore, to obtain commercially successful VOD services, the recov-
ery system should be devised based on the characteristics of streaming media. For
these reasons, we focus on both improving the performance of the recovery system
and achieving a better MTTR value.

3 Cluster-Based VOD Server
3.1 Architecture of VODCA

For large-scale VOD services, we implemented a cluster-based VOD server called
Video On Demand on Clustering Architecture (VODCA) [13]. VODCA consists of a
front-end node named the Head-end Server (HS) and several backend nodes known
as the Media Management Server (MMS). Figure 1 shows the architecture of our
VODCA server and various VOD clients. To provide streaming services, the HS node
works together with the MMS nodes. Throughout the internal network path between an
HS node and the MMS nodes, they exchange working states and internal commands.

3.1.1 Head-End Server (HS) node

The HS node not only receives clients’ requests but also manages the MMS nodes
to support QoS. Figure2 shows the architecture of an HS node. When new MPEG
movies are enrolled, the HS splits them and distributes them into each MMS node.

E Internal
= network

a video stream

fragments Moy, Desktop PC
o e rg AA
. @ Vigeg st'nands -
re
) ! R

....................... - IP-TV

Fig. 1 Architecture of VOD service

@ Springer

Int J Parallel Prog (2009) 37:175-194 179

service
control
module

) client
information

S &

control signal

split movie
fragments, |
frame files

state informatiol

stripping

monitoring moduls

module

MMS states

Fig. 2 Architecture of an HS node

To perform these administrative functions, the HS consists of a striping module, a
monitoring module, a service_control module and a main_daemon module.

The striping module reads the header of the MPEG movie files and splits the movie
data into GOP units. To maintain the order of the split movie data, the sequence number
and header data are attached in front of both the GOP files and the frame files. These
files are delivered to each MMS node according to the striping policy. As striping poli-
cies in the VODCA system, the round-robin policy or the SCAN policy can be selected.

The monitoring module provides functions for managing the VODCA system. The
module displays CPU usage, memory and network in the HS node and MMS nodes.
The system administrator can insert, delete and modify the MMS nodes, and s/he
can measure the quantity of memory, disk and network bandwidth currently used to
provide the streaming services. To monitor the working state for the MMS nodes, a
heartbeat protocol is used between the HS node and the MMS nodes. Since the moni-
toring period in the heartbeat protocol is 2 s, it does not cause performance degradation
of the MMS nodes.

The service_control module manages the network connection between the VOD
servers and the clients. In this module, a thread is created to support a VOD client,
and information about the enrolled movies is transmitted to the clients. For the normal
play mode, this module establishes a UDP connection between the MMS nodes and
the clients. After that, this module lets the MMS nodes transmit the demanded movie
data to the client. In addition, this module treats the control commands such as fast for-
ward, fast rewind, pause and resume. These commands are sent to the MMS nodes via
this service_control module. To guarantee accurate data transmission for control com-
mands, we use TCP connections. The main_daemon module supervises all modules
within the HS node and provides the administrator with general GUI interfaces.

3.1.2 Media Management Server (MMS) node

The MMS nodes transmit the movie fragments stored as GOP units to the clients. Each
MMS node periodically sends its present working status to the HS node. This message

@ Springer

180 Int J Parallel Prog (2009) 37:175-194

split movie
fragments, |
frame files

media
management
2 module

main

daemon)
module g ------_"9¢ al_ resource
- management

MMS state
information

s ; -
state tate information

information i control

; signal

requested
movies

media

service , : >
module threads _~: ,\ m
= n
/.ag QV/@
1

network

stream - . :
process o streaming media

i
i
| ' —J
; ZET NN !
i requested Ta0, QWi !
LR 4R)
1 buffers >, . H
: o S rie i
i
1
1
1

Fig. 3 Architecture of MMS nodes

operates as a heartbeat protocol between the MMS nodes and the HS node. Figure 3
shows the architecture of an MMS node. Each MMS node consists of a media_man-
agement module, a media_service module, a resource_management module and a
main_daemon module.

The media_management module treats the various requests from both the striping
module and the service_control module located in the HS node. In addition to storing
movie fragments, the module also provides the removal and modification functions
for the movie data.

The resource_management module collects information about the state of the MMS
node such as CPU usage, memory, network and disks. The/proc file system in Linux
is exploited for this purpose. This information is plugged into the heartbeat message
packets and sent to the HS node. Since the size of this heartbeat message is 32 bytes,
it does not affect the total performance of the VODCA system. Based on this infor-
mation, the HS node supervises all MMS nodes and determines the admission control
for the new client’s requests.

In the figure, we can see that the media_service module consists of disk stream
threads and network stream processes. For one client, a disk stream thread and a
network stream process are allocated. When the HS node admits a new client, a net-
work stream process is created, and a network connection for the client is estab-
lished. After that, a disk stream thread is created and begins to retrieve the requested
movie data. These movie data are loaded on shared buffers. The network stream
process reads the movie data from the shared buffers and transmits them to the
client.

The main_daemon module receives the control information from the HS node.
According to the information, this module makes the MMS’s internal control signals
and sends them to the related modules.

@ Springer

Int J Parallel Prog (2009) 37:175-194 181

client commands

A

client client commands

interface

movie lists

contr® ELATE
media data oL -
packets network 4~ . |
receive 7 ;
module > =
N
oY c !
N 2
m Nl 25
52 00?’ g!
o5 R *g '
- 8!
2g !

ordered
media data

streaming
media

media
playback
module

data
reordering
module

Fig. 4 Architecture of the client

3.1.3 Clients in the VODCA system

The client side in the VOD system provides for various client interfaces and notifies
the VOD server of client requests. Figure 4 shows the client architecture in the VOD-
CA system. It consists of a client_interface module, a network_receive module, a
data_reordering module and a media_playback module.

The client_interface module delivers the client commands to the HS node and dis-
plays the movie lists and their information on the screen. This module also provides
the graphic user interface and menu icons for clients. The network_receive module
receives the movie data packets from the MMS nodes, and the received packets are
merged into a movie fragment. The regenerated fragments are stored in the shared
memory space. A fragment involves the GOP data and header information.

In the VODCA servers, each MMS node concurrently transmits the movie
fragments to clients. Since the movie fragments are received in random order, the
data_reordering module adjusts the order of these fragments according to the order
of playback time. For this reordering, the sequence number within the header infor-
mation is exploited. The arranged movie fragments are passed to the media_playback
module via Linux’s pipe mechanism. This module decodes the MPEG movie data and
displays them on the screen.

3.2 Striping of Video Blocks

The cluster server easily provides a parallel computing environment based on the inde-
pendent working spaces of the backend nodes and the high-speed network between
them. To apply parallel processing for MPEG movies, we stripe the movie files accord-
ing to the defined granularity policy. After striping, the movie file is partitioned into
many fragments, and they are distributed to the backend nodes with their header infor-
mation. As the granularity unit, we use the GOP size of MPEG movies as a striping

@ Springer

182 Int J Parallel Prog (2009) 37:175-194

IR IR+ o]
1 2 4 P1 1
5 6 8 P2 2
9 10 12 P3
13 14 16 P4
17 18 20 P5 Video Block
21 22 24 P6
25 26 28 P7
29 30 32 P8 Parity Block
33 34 36 P9 ®
84 E8 G il Parity Operation
MMS 1 MMS2 MMS3 MMS4 Recovery (Exclusive OR)
Node

Fig. 5 Striped video blocks and parity blocks

unit. Since each GOP has approximately equal running time in MPEG streams, the
MPEG movies are split into GOPs and distributed into each MMS node with their
sequence number.

The RAID mechanism is usually used to recover the inaccessible video blocks
stored in the failed MMS node. Various kinds of RAID levels exist in commercial
areas. In our research, RAID-3 and 4 levels are used for the basic recovery system
in our VODCA server. These levels are suitable for the video streaming service by
supporting high-speed data transfer rates [11,12].

In the RAID-4 algorithm, the parity block for the same rank blocks should be gen-
erated on writes and recorded on the parity disk. Figure 5 shows the distributed video
blocks across the MMS nodes and the parity blocks stored in a recovery node. For
example, the parity block P1 stored in the recovery node is generated by the exclu-
sive-OR operation to video blocks 1, 2, 3 and 4. RAID-4 reduces the number of disk
assesses but suffers from the burden of aggregating the video blocks from the MMS
nodes at once. To address this problem, when the video blocks of the MMS nodes
are transferred to the recovery node, we use the RAID-3 algorithm that is based on
the fine-grained unit. During the recovery process, the large video blocks stored in
the MMS nodes are partitioned into small data units. After that, these data units are
transferred to the recovery node, and they participate in the exclusive-OR operation
to rebuild the failed video blocks.

3.3 Recovery Flow on RAID-3 and 4

Figure 6 shows the recovery flow operating on basic RAID-3 and 4 mechanisms
[11,12]. We denote this recovery model as the Recovery System based on Basic RAID

@ Springer

Int J Parallel Prog (2009) 37:175-194 183

internal Video block

network

Parity block

Node

=9

Parity Operation
network (Exclusive OR))

VODCA |} >
Internal Network Path
N

T

ailure
Client

external

External Network Path

Fig. 6 Architecture of RS-BRM

Mechanisms (RS-BRM) and adopt it in the VODCA server as a basic recovery system.
As shown in this figure, two network paths are used. One is an external network for
connecting 4 MMS nodes and clients. Another network is an internal network path
deployed between 4 MMS nodes and a recovery node.

When all the MMS nodes work normally, they transmit the stored video blocks to
clients through the external network path. However, if an MMS node fails to work,
the remaining MMS nodes begin to send their video blocks to the recovery node.
To regenerate the video blocks stored in the failed MMS node, the recovery node
uses the video blocks transmitted from the remaining MMS nodes and the parity
blocks stored in its own disks. The internal network path is used for these recov-
ery operations. The external network just takes charge of streaming services to the
clients.

For example, as shown in Fig. 6, when MMS node 3 fails, the recovery node regen-
erates video block 3 by executing the exclusive-OR operation with received video
blocks 1, 2 and 4 and its own parity block P. Regenerated video block 3 is transmitted
to the client via the external network path. Therefore, the streaming media service
could be supported uninterrupted as if nothing had happened. However, for recovery
operations, all video blocks stored in the remaining MMS nodes should be transmit-
ted to the recovery node at the same time. Due to this operation characteristic, the
input network port of the recovery node suffers from traffic congestion. In addition,
during the recovery period, since the remaining MMS nodes do not participate in the
exclusive-OR operations to regenerate the failed video blocks, their CPU utilization is
low.

@ Springer

184 Int J Parallel Prog (2009) 37:175-194

4 Pipeline Computing to Recover Failed Video Blocks
4.1 System Architecture

To address the problems in the RS-BRM, we propose a new recovery method based
on the pipeline computing concept [14]. It is denoted as Recovery System based on
Pipeline Computing Mechanism (RS-PCM). The proposed method not only distrib-
utes the network traffic generated for the recovery operations to the remaining MMS
nodes but also uses the available CPU time of the MMS nodes in the regenerating
process of the video blocks.

In the parity-based RAID algorithm, exclusive-OR operations are necessary to
regenerate the failed blocks. They bring out high computational burden in the recov-
ery node. In addition, to rebuild the video blocks, exclusive-OR operations in several
stages should be performed. Each stage of exclusive-OR operation need two video
blocks stored in each MMS node at a time. However, due to the characteristics of
exclusive-OR, the final result is independent of the processing order of stages. There-
fore, even if the exclusive-OR operations are performed out of order, the same result
is achieved. Based on this characteristic, the RS-PCM distributes the necessary exclu-
sive-OR stages to both the remaining MMS nodes and the recovery node. Due to the
advantage of load distribution, the RS-PCM can solve the network congestion problem
on the input network port of the recovery node. In addition, the available CPU time of
the MMS nodes can be fully used.

Figure 7 shows the flow of video blocks in the system architecture of the RS-PCM. It
spreads the exclusive-OR workloads over all the MMS nodes except the failed MMS 3
node. The result blocks performing the exclusive-OR operations are sent to the neigh-
boring MMS node successively like a chained list. In an MMS node, the video blocks
received from the neighboring MMS node are either the raw video blocks stored in the

VODCA
HUB J internal network

external network

-/® ®

_____ > Parity Operation
Internal Network Path Node Failure (Exclusive OR)
e

External Network Path " (LB = a0 [EE
Client

Video Block Parity Block

Fig. 7 System architecture of the RS-PCM

@ Springer

Int J Parallel Prog (2009) 37:175-194 185

disks or the result block performs the pre-stage exclusive-OR operations. The recovery
node receives the aggregate result and performs the last exclusive-OR operation with
its parity block. Finally, the video block stored in the failed MMS node is rebuilt. It
transmits to clients through the external network path.

For example, in Fig. 7, when MMS node 3 fails, MMS 1 node sends video block 1
to the MMS 2 node. The MMS 2 node performs the 1st exclusive-OR operation with
both video blocks 1 and block 2 stored in its own disk. After that, the result is sent to
the MMS 4 node to perform the exclusive-OR operation with video block 4. The MMS
4 node performs the 2nd exclusive-OR operation on the result block received from the
MMS 2 node and its own video block 4. The result of the 2nd exclusive-OR operation
is sent to the recovery node. Finally, the recovery node regenerates video block 3 by
performing the exclusive-OR operation with the corresponding parity block.

4.2 Pipeline Computing

Figure 8 shows the recovery operations like the pipeline concept. As shown in this
figure, every cycle marked in the bottom area, the RS-PCM simultaneously performs
the loading of video blocks and the exclusive-OR operation and the transmission of
the computed results. It is similar to the pipeline concept of instructions [14]. In this
figure, the MMS 3 node enters a fault state, and it has video blocks 3,7, 11, 15, 19 and
23. These video blocks are regenerated in the recovery node every cycle. The recovery
node executes the exclusive-OR operation with a received block and a parity block

each cycle.
= |
Video block
21)

Panty block

MMS 1

Node Failure

Parity Operation
(Exclusive OR)

&

ﬂEIﬂIﬂEIﬂEIﬂIﬂEI

1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle
Time(CycIes)

Fig. 8 Recovery steps in every Cycle

@ Springer

186 Int J Parallel Prog (2009) 37:175-194

As applied to the pipeline computing concept, the RS-PCM distributes not only the
internal network traffic but also the computational load for exclusive-OR operations
into all MMS nodes. The input network traffic of the recovery node is equal to the
output traffic of one MMS node. Each MMS node also has the same amount of internal
network traffic. The recovery node and MMS nodes could utilize the full capacity of
the internal network path. If the n — 1 MMS nodes are working and the output traffic
of an MMS node is m, only m network traffic exists on the input port of the recovery
node. Since the input network traffic of the recovery node is limited to the amount of
output traffic from a neighboring MMS node, network congestion on the input port of
the recovery node could be avoided.

4.3 Algorithm Behaviors

Figure9 shows the algorithm behaviors of the MMS nodes when the RS-PCM is
applied. For a VOD client, a disk stream thread and a network stream process are
needed. The disk stream thread retrieves the video blocks from the disks and loads
them into the disk buffers. After the disk buffers are full, these video blocks are moved
into the streaming buffers for transmission to the client. In this figure, the diagrams
shown in white on the left side indicate the situation when all the MMS nodes work
in the normal state. On the other hand, the diagrams on the right side shown in gray
represent the recovery behaviors in the RS-PCM. In the recovery behaviors, if an
MMS node fails in the fast-forward and fast-rewind play modes, the recovery steps
are bypassed because these VCR-like functions can be supported with the video blocks
stored in the remaining MMS nodes.

start

Connect to
a recovery
node

Disk Buffer No Read a video
Full ? block from disk
Yes
No Normal Video
Play Mode ?
Stream
Buffer Yes Tes
Full 2
No Yes

No

Move a video block to No
stream buffer

Yes

Put a video block to
disk buffer

Fig. 9 Operations of MMS nodes

@ Springer

Int J Parallel Prog (2009) 37:175-194 187

Fig. 10 Recovery node
operations

| Connect to MMS nodes, HS node |

Failed aMM Ne
ode 2
Yes

| Notify the failed MMS to survived MMS nodes |

Connect to clients

orma

play mode ?

| Receive all client information from HS node, ‘

Receive sequence No. of video blocks in a rank |

G . |
0. matched
2
Yes

| Receive a partially recovered video block from a ‘

last MMS node

¥
Do exclusive OR operation with the video block |

and its parity block

| Move a rebuilt video block to stream buffer |

&>
Yes

The diagram including the “sequence-matched ?”” checks that a video block belongs
to the same rank for the exclusive-OR operation. The sequence number of a video block
represents the position of the current MMS node among all the MMS nodes. In the
gray diagrams at the bottom right of the figure, if the current MMS node is the first
MMS node, this MMS node just sends its own video block to the neighboring MMS
node without the exclusive-OR operation. On the other hand, if this is not the first
MMS node, they perform the exclusive-OR operations with the video blocks received
from the neighboring MMS node and their own video blocks.

Figure 10 shows the algorithm behaviors of the recovery node. The recovery node
waits until an MMS node enters the fault state. When the recovery node detects the
failure of an MMS node, the recovery node sends information about the failed MMS
node to the remaining MMS nodes. And the recovery node acquires client information
from the HS node, such as the IP address, the playing position of the serviced movies
and the play modes (normal, fast forward, fast rewind). Based on the information, the
recovery node can connect to the clients and maintain uninterrupted streaming media
service.

As shown in the diagram that includes the “normal video play mode?,” the
RS-PCM advances the recovery steps when the normal play mode is serviced. The
recovery node checks that the sequence number of the video blocks belongs to
the same rank for the exclusive-OR operation. After that, the recovery node receives

@ Springer

188 Int J Parallel Prog (2009) 37:175-194

the video blocks from the last neighboring MMS node. These video blocks include the
results of exclusive-OR operations computed by the remaining MMS nodes. Finally,
by performing the exclusive-OR operations with the parity block, the recovery node
rebuilds the video blocks stored in the failed MMS node. The rebuilt video blocks are
moved to the stream buffers.

5 Implementation for Experiment
5.1 System Configuration

The VODCA server for our experiments consists of an HS node, 4 MMS nodes and a
recovery node. Each node operates on the Linux operating system. The MMS nodes,
HS node and clients are connected via a 100 Mbps Ethernet switch. All MMS nodes
and the recovery node are also connected via the internal network path constructed by
a 100 Mbps Ethernet switch.

All applications including the system administrative tools of the HS node were
developed on Qt, C and C++ libraries. Table 1 shows the hardware components for
each MMS node in the VODCA system. Table2 shows the detailed specifications
of the movies used in our experiments. They are MPEG-2 movies and have enough
running time to evaluate the performance of our system.

5.2 Load Generator and Virtual Clients

We use the yardstick program to measure the performance of our cluster-based VOD
server [15]. The yardstick program consists of the virtual load generator and the virtual
client daemon. The virtual load generator works on the HS node and generates client
requests based on the Poisson distribution with A = 0.25 [16]. These requests are sent
to the MMS nodes.

Table 1 Specifications of MMS

nodes and a recovery node CPU Intel pentium 4, 3.0 GHz
Memory 1GByte DDR
Disk Seagate barracuda ATA IV 40 GB 7200RPM x 2
0S RedHat 7.3 (Kernel 2.4.18)
Network 100 Mbps fast Ethernet, 100 Mbps Ethernet switch

with 24 ports

Table 2 Specifications of

. . Movie name John Q Ice age
experimental movies Frame size (H x V) 352 x 288 352 x 288
Frame rates (number/s) 25 25
Bit rates (bps) 1,437.6 1,437.6
Running time (min) 110 85
GOP size (Kbytes) 124.1 120.8

@ Springer

Int J Parallel Prog (2009) 37:175-194 189

The virtual client daemon is located in test-bed PCs for clients. It plays the role of
receiving movie data from the MMS nodes. Based on MPEG-1, 2 specifications, we
assume that a QoS stream requires 1.5 Mbps network bandwidth. To support this QoS
criterion, the virtual client daemon measures the time elapsed for receiving 1.5 Mbits.
If the elapsed time is below 1 s, the virtual client daemon stays in an idle state until a
1-s period elapses. After exhausting the remaining period, the daemon wakes up and
begins to receive the next data. Due to this waiting mechanism to satisfy the desig-
nated bit rate, a virtual client daemon can work as a real client. However, if our virtual
client daemon receives the movie data below the 1.5 Mbps rate, then it is likely that
the MMS nodes suffer from the overloaded state due to too many clients. This result
means that the streaming services in progress cannot satisfy the QoS requirement for
clients. Therefore, since MMS nodes do not provide the QoS streams for clients, the
streaming services may be automatically interrupted. We implemented the virtual cli-
ent on our test-bed PCs. In our experiments, we found that a PC had a role for 30
virtual clients.

5.3 Performance Metrics

We use the variation of network traffic driven from MMS nodes as well as that of
network traffic in the input port of a recovery node as the performance metrics. In
addition, after an MMS node fails, the average Mean Time to Recovery (MTTR) is
chosen. From the implemented environment, when an MMS node fails, the reactions
of the remaining MMS nodes are observed, and the total number of QoS streams is
evaluated based on the performance metrics.

6 Performance Evaluation
6.1 Network Traffic

Figure 11 shows the network traffic of an MMS node and the recovery node when
the RS-BRM is applied. The output network traffic from an MMS node is 12 MB/s.
This means that 4MMS nodes provide 256 streams (12M*8bit*4MMS
nodes/1.5 Mbps = 256). The failure of an MMS node takes place at the 120s on the
time line. After an MMS node fails, the remaining MMS nodes begin to transmit
the video blocks to the recovery node. The amount of total network traffic from the
remaining 3 MMS nodes is 36 MB/s. However, as mentioned in Table 1, the maximum
input network bandwidth of the recovery node is 12.5 MB/s (100 Mbps). Therefore,
due to the excessive input data, the input network port of the recovery node suffers
from the bottleneck phenomenon.

To address this problem, the remaining MMS nodes automatically decrease the
number of video blocks transferred to the recovery node. As shown in this figure,
after an MMS node enters a fault state, the output traffic from the remaining MMS
nodes to the recovery node drops to 4 MB/s rates. In this figure, they are represented
as rectangles. According to the regulation of output traffic in MMS nodes, the input
traffic of the recovery node is measured at 12 MB/s rates. It is marked as the x shapes

@ Springer

190 Int J Parallel Prog (2009) 37:175-194

16
—— Output traffics to clients from a MMS node
—0o— Output traffics to a recovery node from a MMS node
14 —a— Output traffics to clients from a recovery node M
—>— Input traffics to a recovery node
o 12
(2]
S~
3 il
S 10
7]
NN
5 8
=
|_
x 6
:.
o 4
Z f
2
1 51 101 151 201

Time(sec)

Fig. 11 Network traffic in the RS-BRM

in this figure. Therefore, the recovery node receives the video data of 12MB/s from
the remaining 3 MMS nodes and rebuilds the video blocks stored in the failed MMS
node.

From the triangles, we can find that the recovery node transfers the rebuilding
video blocks to the clients at 4 MB/s rates. Depending on the amount of the output
traffic from the recovery node to the clients, after an MMS node fails, the output
traffic from the remaining MMS nodes to the clients is also sustained at 4 MB/s rates.
The 4 MB/s traffic means that only 85 clients can be supported (4 M *8bit * 4 MMS
nodes/1.5 Mbps = 85). As aresult, after an MMS node fails, the RS-BRM method can
support only 33.2% of the original 256 streams.

Figure 12 shows the network traffic in an MMS node and the recovery node when
the RS-PCM is applied. Before an MMS node fails, 256 streams are supported in
this method. An MMS node fails at 120 s on the time line. After an MMS node fails,
the first MMS node transmits its own video blocks to a neighboring MMS node. The
other MMS nodes execute exclusive-OR operations with the video blocks transmitted
from a neighboring MMS node. The results are transmitted to the neighboring MMS
node successively. From the circles and rectangles in this figure, we can find that the
amount of input traffic from the neighboring MMS node is almost equal to that of its
own output traffic transmitted to the neighboring MMS node.

As shown in this figure, the input traffic from the last MMS node to the recovery
node reaches 12 MB/s rates. According to the amount of input network traffic, the
recovery node can also rebuild the video blocks and transmit the regenerated video
blocks to clients. The triangles show that the output traffic from the recovery node to
the clients uses 12 MB/s rates. These transfer rates of the rebuilt video blocks are equal
to the output traffic rates from the remaining MMS nodes to the clients. As a result,
even if an MMS node fails, since the video block transfer rates from the recovery node
and the remaining MMS node are 12 MB/s, streaming media service for 256 clients
can be continued (12M * 8bit * 4 MMS nodes/1.5 Mbps = 256).

@ Springer

Int J Parallel Prog (2009) 37:175-194 191

—— output to clients from a MMS node
—&— output to its neighbor MMS from a MMS node

1 —°— Inputfrom a neighbor MMS to a MMS node

14 —— —#— output to clients from a recovery node
o —x— input from a last MMS to a recovery node
(o]
Q12
2
m
S 10
5 z
kel |
s 8 }
2
o 6 f
o |
x \
s 4 \
./ !
[} |
- 2 M

|
0 | L I
1 51 101 151 201
Time(sec)

Fig. 12 Network traffic in the RS-PCM

The experimental results showed that the RS-PCM not only distributed the net-
work traffic generated in the recovery operations but also utilized the available CPU
resources of the MMS nodes. Due to these advantages, the RS-PCM resulted in a
better performance than the RS-BRM. In the experimental results, after an MMS node
failed, the RS-PCM sustained 256 clients continuously, but the RS-BRM supported
only 85 clients. When compared to the RS-BRM, the RS-PCM provides about 3 times
unceasing QoS streams in the same working environment.

6.2 Mean Time to Recovery (MTTR)

Figure 13 shows the reading times of 1 GOP in the client side while the streaming ser-
vice is in progress under the RS-BRM. The experiments are performed between the
7MB/s and the 12 MB/s loads. Although an MMS node fails at 120 s on the time line,
the fluctuation of the GOP reading times starts at the 156-s position. The time delay
is due to the network delay and the buffering time in the client side. As shown in this
figure, when all MMS nodes work normally, the average reading time is about 0.65s,
and it maintains a steady state. However, after an MMS node fails, the reading times
vary. These variations are due to the loss of packet data, the initial setup time of the
recovery algorithm and the traffic congestion in the recovery node. In particular, the
fluctuation rates are high at the 11 MB/s and the 12 MB/s load. Under these workloads,
unstable oscillations of the GOP reading times emerged between 156 and 2665s. The
difference between the maximum GOP reading time and the minimum GOP reading
time is about 1.18s. After the fluctuation period passes through, the recovery node is
working normally, and the GOP reading times converge to the 0.65 s level again. The
MTTR value is 110s. It can be regarded as an impatient period to VOD clients [2,3].

Figure 14 represents the GOP reading times in the RS-PCM. The failure of an
MMS node takes place at 120 on the time line. Since the network delay has emerged
between the server and clients, the fluctuation of the GOP reading time on the client

@ Springer

192 Int J Parallel Prog (2009) 37:175-194

1.40
—o— 7MB/s —*— 8MB/s

120 L] X 9MBis —A- 10MB/s
g ’ —=— 11MB/s —%— 12MB/s
L @
o 1.00
£
|_
o 0.80
£
s
S 0.60
o
o
o 0.40 I l&u}l
(O]
™ 0.20 g(j)é

0.00

1 51 101 151 201 251
Time(sec)

Fig. 13 GOP reading time in the RS-BRM

1.40
——7MB/sec —%—8MB/sec
1.20 1 - oMB/sec —A— 10MB/sec
8 —&—11MB/sec —6— 12MB/sec
@ 1.00
Q
S
= 0.80
(o))
=
T 060
Q
o
o) 0.40
(O]
— 0.20
0.00 &
1 51 101 151 201 251
Time(sec)

Fig. 14 GOP reading time in the RS-PCM

side begins at 148s and finishes at 176s. After the agitation state, the reading times
promptly converge to the steady state of 0.65s. The fluctuation period is just 28s.
When compared to the RS-BRM, the period of the fluctuation is very short. Since
the recovery operations are distributed into all MMS nodes, the recovery node can
transmit the rebuilt video blocks within a relatively short time. The fluctuation period
of RS-PCM is 4 times shorter than the RS-BRM. The difference between the maxi-
mum GOP reading time and the minimum GOP reading time is 0.68 s. This result is
the half of the difference issued by the RS-BRM. In the RS-PCM, since the period of
fluctuations and the vibration amplitudes are very short, we confirm that the RS-PCM
results in a much better MTTR value than the RS-BRM.

@ Springer

Int J Parallel Prog (2009) 37:175-194 193

7 Conclusion

In this paper, recovery mechanisms in cluster-based VOD servers were studied to
support QoS streams when a backend node fails. To study the recovery methods in
the actual VOD system, we implemented a cluster-based VOD server called the VOD-
CA. Based on the VODCA system, the RS-BRM was designed with the advantage of
RAID-4 in disk retrieving speed and the advantage of RAID-3 in effective memory
usage. In the RS-BRM, we found that the input network port of a recovery node was
easily saturated with the video blocks transmitted from the remaining MMS nodes.
The reduction in the number of video blocks transmitted to the recovery node caused a
reduction in the number of serviced clients and the degradation of video stream qual-
ity. In addition, the RS-BRM showed the inefficient CPU usage of the MMS nodes.
To address these issues, we proposed the RS-PCM based on the pipeline computing
concept. In the RS-PCM, the recovery node rebuilt the video blocks stored in the
failed MMS node every cycle. This mechanism is similar to the pipeline process of
instructions. The RS-PCM made efficient use of the available CPU time of the MMS
nodes so that all MMS nodes participated in the recovery procedures to rebuild the
video blocks stored in the failed MMS node. Based on this pipeline computing, the
RS-PCM distributed not only the network traffic needed for the recovery process but
also balanced the computation loads driven by exclusive-OR operations. From our
experiment, we observed that the RS-PCM supported 3 times more QoS streams than
the RS-BRM.

For commercial VOD services to be successful, the fluctuation period of unstable
streaming service due to failure events should be short. In the GOP reading time of cli-
ents, the RS-PCM showed a 4-time shorter fluctuation period than the RS-BRM. Since
the RS-PCM quickly recovered the failure state of the VOD servers, the streaming
media services in progress could be sustained without degradation of media quality.
The experiments showed that the RS-PCM had an appropriate MTTR value to deal
explicitly with failure events in cluster-based streaming media servers.

Acknowledgements This research was financially supported by the Ministry of Education, Science
Technology (MEST) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource
Training Project for Regional Innovation.

References

1. Sitaram, D., Dan, A.: Multimedia Servers: Applications, Environments, and Design. Morgan Kauf-
mann Publishers, San Francisco (2000)

2. Fox, A., Patterson, D.: Approaches to recovery oriented computing. IEEE Internet Comput. 9(2),
14-16 (2005). doi:10.1109/MIC.2005.39

3. Tang, D., Zhu, J., Andrada, R.: Automatic generation of availability models in RAScard. In: IEEE
International Conference of Dependable Systems and Networks, June 23-26, pp. 488-494 (2002)

4. Sarhan, N.J., Das, C.R.: Caching and scheduling in NAD-based multimedia servers. IEEE Trans.
Parallel Distrib. Syst. 15(10), 921-933 (2004). doi:10.1109/TPDS.2004.49

5. Kang, S., Yeom, H.Y.: Modeling the caching effect in continuous media servers. Multimedia Tools
Appl. 23(3), 203-224 (2003). doi: 10.1023/A:1025702332314

6. Shenoy, PJ., Goyal, P., Vin, H.M.: Data storage and retrieval for video-on-demand servers. In: IEEE
Fourth International Symposium on Multimedia Software Engineering, pp. 240-245, December 2002

@ Springer

http://dx.doi.org/10.1109/MIC.2005.39
http://dx.doi.org/10.1109/TPDS.2004.49
http://dx.doi.org/10.1023/A:1025702332314

194

Int J Parallel Prog (2009) 37:175-194

10.

11.

12.

14.
15.

16.

. Gafsi, J., Biersack, E.W.: Modeling and performance comparison of reliability strategies for dis-

tributed video servers. IEEE Trans. Parallel Distrib. Syst. 11(4), 412—430 (2000). doi:10.1109/71.
850836

. Gafsi, J., Biersack, E.W.: Data striping and reliability aspects in distributed video servers. Cluster

Comput.: Netw. Softw. Tools Appl. 2(1), 75-91 (1999)

. Bolosky, W.J., Pitzgerald, R.P., Draves, J.H.: Distributed schedule management in the tiger video

fileserver. In: Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, Saint
Malo France, pp. 212-223, 05-08 October 1997

Chang, T., Shim, S., Du, D.: The designs of RAID with XOR engines on disks for mass storage
systems. In: IEEE Mass Storage Conference, pp. 181-186, 23-26 March 1998

Merchant, A., Yu, P.S.: Analytic modeling and comparisons of striping strategies for replicated disk
arrays. IEEE Trans. Comput. 44, 419-433 (1995). doi:10.1109/12.372034

Holland, M., Gibson, G., Siewiorek, D.: Architectures and algorithms for on-line failure recovery in
redundant disk arrays. J. Distrib. Parallel Databases 2, 295-335 (1994). doi:10.1007/BF01266332

. Seo, D, Lee, J., Jung, I.: Resource consumption-aware QoS in cluster-based VOD servers. J. Syst.

Archit. 53(1), 39-52 (2007)

Patterson, D.A., Hennessy, J.L.: Computer Organization & Design, pp. 392-490, Kaufmann (1998)
Schmidt, B.K., Lam, M.S., Northcutt, J.D.: The interactive performance of SLIM: a stateless, thin-
client architecture. ACM Symposium on Operating Systems Principles, pp. 31-47 (1999)

Choi, J.-M., Lee, S.-W., Chung, K.-D.: A multicast delivery scheme for VCR operations in a large
VOD system. In: 8th IEEE International Conference on Parallel and Distributed Systems, pp. 555-561,
26-29 June 2001

@ Springer

http://dx.doi.org/10.1109/71.850836
http://dx.doi.org/10.1109/71.850836
http://dx.doi.org/10.1109/12.372034
http://dx.doi.org/10.1007/BF01266332

	Recovery Strategies for Streaming Media Servicein a Cluster-Based VOD Server with a Fault Node
	Abstract
	1 Introduction
	2 Related Work
	3 Cluster-Based VOD Server
	3.1 Architecture of VODCA
	3.2 Striping of Video Blocks
	3.3 Recovery Flow on RAID-3 and 4

	4 Pipeline Computing to Recover Failed Video Blocks
	4.1 System Architecture
	4.2 Pipeline Computing
	4.3 Algorithm Behaviors

	5 Implementation for Experiment
	5.1 System Configuration
	5.2 Load Generator and Virtual Clients
	5.3 Performance Metrics

	6 Performance Evaluation
	6.1 Network Traffic
	6.2 Mean Time to Recovery (MTTR)

	7 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

