Available online at www.sciencedirect.com

i i RNAL OF
ScienceDirect 404 ©

SYSTEMS
ARCHITECTURE

Journal of Systems Architecture 53 (2007) 39-52

www.elsevier.com/locate/sysarc

Resource consumption-aware QoS in cluster-based
VOD servers

Dongmahn Seo, Joahyoung Lee, Yoon Kim, Chang Yeol Choi,
Manbae Kim, Inbum Jung *

Department of Computer Science and Engineering, Kangwon National University, 192-1 Hyoja 2-Dong,
Chuncheon, Kangwon Do 200-701, Republic of Korea

Received 13 August 2005; received in revised form 21 April 2006; accepted 3 July 2006
Available online 13 October 2006

Abstract

For Video-On-Demand (VOD) systems, it is important to provide Quality of Service (QoS) to more clients under limited
resources. In this paper, the performance scalability in cluster-based VOD servers is studied with several grouping config-
urations of cluster nodes. To find performance bottlenecks, the monitoring functions are employed and the maximum QoS
streams are measured under the various requests including VCR functions. To support more user friendly interface, an
embedded set-top model is suggested for the QoS of TV clients. From our detailed experiment results, a new admission con-
trol method is proposed that is based on available system resources and the actual amount of resource consumed for QoS
streams. The proposed method provides not only more scalable QoS in cluster-based VOD servers but also the enhancement
of resource utilization by guaranteeing the maximum number of QoS streams.
© 2006 Elsevier B.V. All rights reserved.

Keywords: VOD; Cluster system; Streaming media; QoS; Resource aware; Parallel processing

1. Introduction

VOD is a representative streaming media service
technology and has been researched in various
areas. However, it is hard to expect good perfor-
mance if the VOD system is implemented without
considering the interrelation between the server
and client [1]. The performance of the VOD system
is represented with the number of concurrent clients

* This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC
(Information Technology Research Center) support program
supervised by the IITA (Institute of Information Technology
Assessment) (IITA-2005-(C1090-0502-0022)). This work was
partially supported by the Kangwon Institute of Telecommuni-

cations and Basic Research Program of the Korea Science
Engineering Foundation (R05-2003-000-12146-0).
* Corresponding author. Tel.: +82 33 250 6396; fax: +82 33 252
6390.
E-mail address: ibjung@snslab.kangwon.ac.kr (I. Jung).

giving a guarantee against a stable QoS. The QoS
is closely related to the server architecture model,
storage systems, network capability and client ter-
minal types.

1383-7621/$ - see front matter © 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.sysarc.2006.07.003

mailto:ibjung@snslab.kangwon.ac.kr

40 D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

In this paper, the cluster-based VOD server
denoted as the VODCA (Video-On-Demand Cluster
Architecture) is presented. Our devised system is
composed of a general PC cluster platform and per-
forms parallel processing for MPEG 1, 2 media. Not
only does the VODCA provide the scalable perfor-
mance within the pre-defined QoS ranges, but also
it supports a various requests from clients including
VCR functions.

For the parallel processing of MPEG 1, 2 media,
the granularity for parallelized materials should be
determined. In our research, the Group of Pictures
(GOP) layer in MPEG is regarded as a granularity
unit. The MPEG movie data is striped as GOP units
and evenly distributed to backend nodes. The GOP
units extracted from MPEG media are indepen-
dently processed in backend nodes. Based on parallel
storage, parallel retrieval and parallel transmission
into a network, the load balancing is maintained
among backend nodes. From our approaches, the
VODCA can supply the scalable streams to clients
within the pre-defined QoS metrics.

Due to intrinsic MPEG characteristics, it is hard
to implement VCR functions such as fast rewind,
fast forward and resume commands in VOD servers
[2,3]. If these functions are implemented by means
of sending and playing the movie data at a faster
speed, the network is easily saturated. In our study,
we propose VCR functions by extracting I frames
from MPEG data and by managing these frames
independently. Our experiment shows that the pro-
posed method for VCR functions reduces the net-
work traffic by sending only I frames.

The PC is usually considered as the standard
equipment of VOD clients, but we employ TV to
provide non-specialists with a friendlier interface.
To satisfy the interactive requirements of clients
on the TV side, we implement a set-top box that is
composed of an embedded board and an infrared
sensor device controlled by a remote controller. This
TV client provides a more comfortable human inter-
face by selecting desired movies within the range of
the remote controller.

In the VOD system, admission control is required
to guarantee the quality of streaming media while all
clients are being serviced. In our research, we devise
system monitoring functions to analyze resource
consumption for serviced streaming media. Based
on these functions, we measure the quantity of
memory, disk bandwidth and network bandwidth
consumed for satisfying various client requests
with QoS streaming movies. From these detailed

measurements, the bottlenecks of scalable perfor-
mance in cluster-based VOD servers are investigated.
Based on these analyses of resource consumption, a
RCAAC (Resource Consumption Aware Admission
Control) method is proposed. It is based on available
system resources and the amount of resources con-
sumed for QoS streams. In our experiments, we
confirm that the proposed method increases the
utilization of the system resource by guaranteeing
the maximum number of QoS streams.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the parallel processing of MPEG
data and the implementation of VCR functions. Sec-
tion 3 provides the details for our VODCA system.
In Section 4, the performance of our VOD system
is measured and the results are analyzed. Section 5
makes suggestions for the resource consumption-
aware admission control. Section 6 describes related
work and Section 7 concludes the paper.

2. Parallel processing of MPEG media
2.1. Characteristics of MPEG media

MPEG-1, 2 media consists of a video sequence
layer, a Group of Pictures (GOP) layer and a picture
layer. The video sequence layer is a group of sequen-
tial pictures that have the same frame size and frame
rate. The GOP layer is a minimal unit for playing
movies and is usually exploited at the random access
unit. The picture layer is the single image displayed
on the screen. This picture layer is composed of 4
kinds of frames known as I, B, P, D frames. Each
frame has its own different function for its decoding
procedure. Each GOP is a random access unit and
includes at least one or more I frames. Fig. 1 shows
the architecture of GOP. An I frame uses only trans-
form coding and provides a random access point
into the compressed video data. I frames can be used
for predicting P and B pictures. A P frame is coded
using motion compensated prediction from a previ-
ous I or P frame. This technique is called forward
prediction from I/P to P as shown in Fig. 1. P frames
can accumulate coding errors. P frames go through
the feedback loop and can be used for predicting
P and B pictures. A B frame is coded using both a
past and/or future picture as a reference. Thus it is
called bidirectional prediction, as shown in Fig. 1.
The errors are not accumulated, since the B picture
is never used as a reference. B frames can be coded
using forward or backward (or both) motion com-
pensation. A D frame is a special case of intra in

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 41

Forward Motion Compensation

Bidirectional Motion Compensation

Fig. 1. Architecture of GOP.

which only the DC coefficient of each (8 x 8) block is
coded. D frames provide simple and fast forward
mode but yield limited image quality. Currently D
frames are not used [4].

Each layer in MPEG-1,2 has its own header and
is distinguished from specific byte streams. The byte
stream of headers begins with [0 x 000001 + start
bits for each layer]. The start bits of the video
sequence layer are 0 x B3. The GOP layers have
0xB5 and the start bits of picture layers are
0 x 00. From these headers, it is possible to extract
GOPs and specific frames from MPEG media.

2.2. Striping and distribution for MPEG media

To apply parallel processing for MPEG media,
the movie files are striped based on the defined gran-
ularity policy. After that, the movie file is parti-
tioned into many fragments. These fragments are
distributed into backend nodes with their header
information.

The choice of striping methodsis related to the load
balancing, clients’ preference and VCR functions. If
each backend node has different sizes of movie frag-
ments, it is hard to keep the load balance among back-
end nodes. Two approaches are usually suggested in
striping policies. One methodisto partitionthe MPEG
movie into fragments with same size. This way is easy
to implement in the striping step and evenly uses the
disk space of each node. However, it is difficult to
implement the VCR functions such as fast forward,
rewind and resume requests. Another approach is that
a MPEG movie is split into fragments with equal run-
ning time. This approach provides relatively good
functionality for VODclients butitisnoteasy tocreate
equalamounts of playing time for all fragments. In our
research, the second method is exploited for support-

ing various functions in our VOD system. To exploit
MPEG media characteristics, we use one GOP size
as a striping unit. Since each GOP has approximately
equal running time in MPEG streams, the MPEG
movies are split into GOPs and distributed into each
node with their sequence number and size. For exam-
ple, if a movie decodes 30 frames per second and one
GOP consists of 15 frames, each backend node takes
charge of the streaming service for 0.5 s.

There are several methods for striping among
backend nodes [5,6]. In round-robin method, GOPs
are distributed into each node based on the sequence
of nodessuchas1 -2 —..-— N —1---, whereas
the SCAN method distributes them as 1 —
2—.-+— N— N—1---— 1. The selection of strip-
ing method depends on the construction of the disk
storage, the effects of data prefetching and the
weight of clients’ preference movies. In our research,
when the movies are deployed in our system, the sys-
tem administrator can choose the striping method by
considering the organized cluster’s properties.

2.3. VCR functions

Several approaches are proposed to supply the
VCR functions. For example, there are the employ-
ment of separated movie files, transmitting movie
data more quickly and SCAN method [1]. While first
method has overhead for making additional data
files and requiring extra disk storage for VCR func-
tions, there is no runtime overhead when the VCR
functions are being serviced. The second method
has no overhead in the initial stages. However, this
method severely exhausts network bandwidth,
because it requires more network bandwidth to
transmit the amount of MPEG media in as much
quantity at fast rates. The last SCAN method is that

42 D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

specific frames are extracted from MPEG movies for
running time and they are transmitted to the clients
requesting VCR functions. In this method, servers
are easily overloaded due to the gathering of the spe-
cific frames. In addition to the overhead, it is difficult
for other clients to reuse the frames extracted from
the same movie.

In our research, by using the separated movie files
together with the SCAN method, the advantages of
the two methods are exploited. When a new MPEG
movie is enrolled into our VOD system, I frames are
extracted from the GOPs of the new movie file and 1
frame files are created for VCR functions. Each I
frame file is composed of all of I frames and header
information. Since I frames are decoded and played
independently without referencing other frames,
each I frame file is dispatched onto the node that
the corresponding GOP is located on. By exploiting
the sequence number in the header, there is no syn-
chronization overhead between backend nodes while
the streaming service is proceeding. Since the size of |
frames is smaller than that of GOPs, the transmitting
of I frames instead of GOPs reduces the amount of
network bandwidth consumed.

In our approach, when new movies are enrolled,
the overhead to create I frame files exists. However,
there are no additional costs for supporting VCR
functions in running time. Since no runtime over-
heads enhance the utilization of system resources,
a greater number of QoS streams are available.

3. Architecture of the VODCA system

To examine out performance limitations in large
scale VOD services, we implemented the VODCA
(Video-On-Demand on Clustering Architecture)
system. The VODCA system includes not only ser-
ver sides but also client sides. Servers in the VODCA
consist of a HS (Head-end Server) node and several
MMS (Media Management Server) nodes known as
backend nodes. The client system in the VODCA is
working together with HS and MMS nodes. Fig. 2
shows the architecture of our VODCA system.

3.1. Servers in the VODCA system

3.1.1. Head-end Server (HS) node

The HS node not only receives clients’ requests
but also manages MMS nodes to support QoS.
When new MPEG movies are enrolled, the HS splits
them and distributes them into each MMS node.
To perform these administrative functions, the HS

MMS state

Head- end
Server

Management
Server

>
client Information,
~ mediadata,
media control information

Fig. 2. Architecture of the VODCA system.

consists of a striping module, monitoring module,
service_control module and a main daemon module
as shown in Fig. 3.

The striping module reads the header from
MPEG movie files and splits the movie data into
GOP units and also extracts 1 frames to support
VCR functions. To keep the order of split movie
data during the movie runtime, the sequence num-
ber and header data are attached in front of both
the GOPs and I frames. With the identities for
GOP and I frame files like this, these files are deliv-
ered to each MMS node according to the striping
policy. In the VODCA system, both round-robin
policy and SCAN policy are provided for a system
administrator.

The monitoring module provides functions to
manage the VODCA system. It displays usages of
CPU, memory and network of the HS node and
MMS nodes. A system administrator can insert,
delete, and modify MMS nodes and s/he can mea-
sure the quantity of memory, disk and network
bandwidth used for each stream.

To monitor the working state of MMS nodes, a
heartbeat protocol has been devised between the
HS node and the MMS nodes. Since the monitoring
period of the heartbeat protocol is 2 s, it does not
cause the performance degradation of MMS nodes.

The connection request from a VOD client is man-
aged by a thread of service _control module. This
module provides the information of enrolled movies
to clients. When clients demand movie, this module
establishes the connection between MMS nodes
and clients. After connecting, the demanded movie
begins to transmit from MMS nodes. During the
movies, all control requests including VCR functions
are sent to MMS nodes via this module.

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 43

movie request,
connection request

) control signal
main
daemon <

movie list

service
control

client information,

~

<
~r/ state information
A J
Q

state information
control signal

monitoring
module

MMS states

module)
movie control

stripping
module

movie data
(fragments, | frames)
movie

files

Fig. 3. Architecture of HS node.

The main_daemon module supervises all mod-
ules within the HS node and also provides the
administrator with general interfaces to manage
nodes.

3.1.2. Media management server (MMS) node

The MMS nodes transmit their stored movie
fragments to clients under the supervision of the
HS node. Each MMS node sends the present work-
ing status to the HS node periodically. This message
operates as a heartbeat protocol between MMS
nodes and the HS node. Each MMS node consists

client information,
movie control

state

) . - control
information|

! signal

.............. e e

A\ 4
requested
movies

media
service
module
client
information

ITTT
shared

buffers
movie data

network

state information

v ’:”\ |
(S > H H

streaming media

of a media_management module, media_service
module, resource_management module and a
main_daemon module. Fig. 4 shows the architecture
of MMS nodes.

The media_management module handles the var-
ious requests from both the striping module and ser-
vice module working in the HS node. In addition to
storing the movie fragments into the disk storage of
each MMS node, it also provides removal and mod-
ification functions.

The resource_management module collects the
information about the MMS node’s internal state

split movie

management
module

MMS state
information

resource
management
module

v

Fig. 4. Architecture of MMS node.

44

such as the usage of CPU, memory, network and
disks. The /proc file system in Linux is exploited
for this purpose. This information is plugged into
message packets and sent to the HS node every 2 s
as a heartbeat message. Since the size of this heart-
beat message is 32 bytes, it dose not affect the total
performance of the VODCA system. Based on this
information, the HS node supervises all MMS
nodes and determines the admission control for
new client’s requests.

As shown in Fig. 4, the media_service module
consists of disk stream threads and network stream
processes. In this module, the stored movie frag-
ments are retrieved from disks and transmitted into
the network. For one client, one disk stream thread
and one network stream process is allocated in all
MMS nodes. When a new client arrival is registered
from the HS node, a network process is created and
the connection to client is established. After that, a
disk stream thread is created and begins to retrieve
the requested movie fragments. These fragments are
loaded on the shared buffers as shown in Fig. 4. The
corresponding network stream process reads movie
fragments from the shared buffers and sends them
via the network path connected to the client. To
guarantee the integration of data on shared buffers,
synchronization primitive such as mutex is applied.

The main_daemon module receives control infor-
mation from the HS node. According to this infor-
mation, this module makes MMS’s internal control
signals and sends them to other modules to manage
their operations.

client commands

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

3.2. Clients in the VODCA system

3.2.1. Software architecture for VOD clients

The client side in VOD system should provide for
the various client interfaces. It sends client requests
to the VOD server and decodes the MPEG movies
and plays them on the screen. As shown in Fig. 5,
the client architecture in the VODCA system con-
sists of a client_interface module, network_receive
module, data_reordering module and a media_play-
back module.

The client_interface module delivers client com-
mands to the HS node and displays the movie lists
and their information on the screen. This module
also provides the graphic user interface and menu
icons for users.

The network_receive module receives movie data
packets from MMS nodes. This module communi-
cates with all MMS nodes and receives movie data.
The received packets are merged into individual
GOP fragments and stored on the shared memory
areas in the client side. Each fragment involves a
GOP data and its header information.

In the VODCA servers, each MMS node concur-
rently transmits the movie fragments to clients. Since
the movie fragments are received in random order,
the data_reordering module adjusts the sequence
order of these fragments based on their sequence
number within header information. According to
the sequential ordering of fragments, they are passed
to the media_playback module via the pipe mecha-
nism of Linux. This module decodes the movie

A

movie lists

_

network
receive
module

packets

media data

shared fragments

buffer| .'

media data R4
fragments

ordered

data
reordering
module

¢"

media data

./

- 4
~control signal +

¢”

’
,#control signal

./ client client commands
" interface
.\ module

4

!
jcontrol signal

streaming
media

media
playback
module

Fig. 5. Software architecture of VOD client.

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 45

data passed from the pipe and displays them on the
screen. In particular, while the VCR functions are
serviced, only video data without the audio data
are decoded and displayed.

3.2.2. VOD client with TV equipment

To provide non-specialists with a friendlier inter-
face, we employ TV as the equipment of VOD
clients. To provide interactive functions for TV
clients, a set-top box composed of an embedded
board and an infrared sensor device controlled by
the remote controller is deployed. TV clients provide
a comfortable human interface by selecting desired
movies within the range of the remote controller.

The basic structure of our set-top device includes
4 internal software modules described in Fig. 5. In
addition to these modules, the set-top equipment
consists of the re-compiled embedded Linux kernel,
the design of client GUI to exploit frame buffers and
the movie player working in limited resources. Our
set-top operates based on Linux operating system
and embedded Qt libraries [7-9].

To install the Linux on our embedded boards,
the general PC is exploited as a test-bed. For a tar-
get disk, a specific directory is created and is format-
ted as the ext3 type [7]. This disk is organized as the
independent booting environment with minimum
files and libraries. When the Linux kernel compiles,
we have the option to activate the frame buffer
mechanism. This re-compiled kernel is also stored
in the target disk area.

The embedded Qt 3.0 is used to make the client
GUI environment. It supports window development
tools based on Linux frame buffers. While the VOD
servers are based on C libraries, our embedded client
is implemented on Qt libraries. Due to the different
working environment, there are some interoperabil-
ity problems between servers and clients. To solve
these problems, the client’s network module is
designed with C libraries.

The MPlayer 0.18 version is utilized for our
movie player. It is supported on open source project
committee [10]. Since the embedded environment
has limited resources, the MPlayer 0.18 was com-
piled to fit into our environment. Furthermore,
since the MPlayer does not support the VCR func-
tions such as fast rewind and fast forward, we
modified the signal handler parts of MPlayer to
handle the external signals from the client remote
controller. These additional handlers operate their
independent roles according to each VCR function
demand.

We also modify MPlayer to cooperate with the
data_reordering module taking charge of the re-
ordering mechanism of movie fragments. As a result,
all preserved materials stored in the target disk are
downloaded to the embedded board being used as
a set-top and it is working for a TV client.

4. Performance evaluation
4.1. Experiment environment

The VODCA server for our experiments consists
of a HS node and 6 MMS nodes. Each node operates
on the Linux operating system. The MMS nodes, HS
node and clients are connected via a 100 Mbps
Ethernet switch. All applications included the sys-
tem administrative tools of the HS node are devel-
oped on Qt, C and C++ libraries. Table 1 shows
the hardware components for each MMS node in
the VODCA system.

We use the yardstick program to measure the per-
formance of our cluster-based VOD servers [11]. The
yardstick program consists of the virtual load gener-
ator and the virtual client daemon. The virtual load
generator is located in the HS node and generates cli-
ent requests based on the Poisson distribution with
lambda = 0.25 [2,6]. These requests are sent to each
MMS nodes. After that, all MMS nodes concur-
rently begin streaming media services to satisfy the
clients’ demand.

The virtual client daemon locates in test-bed PCs
for clients. It plays the role of receiving movie
data from MMS nodes. Based on MPEG-1,2 spec-
ifications, we assume that a QoS stream requires
1.5 Mbps of network bandwidth. To support this
QoS metric, the virtual client daemon measures
the time elapsed for receiving 1.5 Mbits of data. If
the elapsed time is below 1 s, the virtual client dae-
mon remains in an idle state until a 1s period
passed. After exhausting this remaining time, the
daemon wakes up again and begins to receive the

Table 1

Specification of MMS nodes

CPU Intel Pentium 4, 1.6 GHz

Memory 256 MB DDR

Disk Segate Baracuda ATA 1V 40 GB 7200
RPM x 2

Operating RedHat 7.3 (Kernel 2.4.18)

system
Network 100 Mbps Fast Ethernet,

100 Mbps Ethernet Switch with 24 ports

46 D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

next media data. This waiting process makes the vir-
tual client daemon act as a real client. However, if
our virtual client daemon receives movie data below
the 1.5 Mbps rate, the MMS nodes are regarded as
they are in an overloaded working state. This situa-
tion means that the QoS for streaming media is not
supported. The virtual client is implemented based
on our test-bed PCs. In our experiments, it can be
found that a PC plays enough roles for 30 virtual
clients.

VCR functions are a kind of image search request.
Since clients are satisfied with the transmission of 1
frame, the QoS metrics for VCR functions are not
considered in our experiments.

Table 2 shows the detail specification of movies
used in our experiments. They are MPEG-2 movies
and have enough running time to evaluate their per-
formance in our VODCA system. As shown in Table
2, we also measured the sizes of GOPs and I frame in
these movies. This information is used practically to
find out the sources of performance bottlenecks
described in the next Sections.

Table 3 shows the internal components of the
embedded kit for developing set-top equipment.
This kit is used to implement a set-top device for a
TV client. However, while the total number of clients

Table 2

Specification for experimental movies

Movie name John Q Ice Age

Frame size (width X height) 352 % 288 352 % 288

Frame rates (frames/s) 25 25

Running time (min) 110 85

GOP size (Max-Avg-Min, 252.9-124.1- 281.7-120.8-
KB) 7.4 20.8

I frame size (Max-Avg-Min, 43.6-25.8-6.9 50.2-22.8-6.6
KB)

Header size (Bytes) 4910 2558

Table 3

Set-top developing environment

Board IB790

CPU Pentium 111 600 MHz

Memory 64 MB SDRAM

128 MB Flash Disk

Input device RS-232 C serial infrared sensor
Operating system Linux Kernel 2.4.18

GUI Embedded Qt 3.0.6

Movie player MPlayer 0.18

Test bed Redhat 7.3, P4 1.6 GHz, 256 MB

Flash memory

is measured in our VODCA system, general PCs
loading the yardstick program are used.

4.2. Server performance

4.2.1. Performance under normal play requests

Fig. 6 shows the performance scalability of the
VODCA according to the number of MMS nodes.
The Y-axis represents the maximum number of cli-
ents giving a guarantee against the QoS metric. As
assumed in the above Section, the QoS metric in
our research is that the transmission rate of 1.5 Mbps
is guaranteed. The results in this figure are the aver-
age of 5 times measurements under the same experi-
mental environment.

As illustrated in Fig. 6, the maximum number of
clients linearly increases until the number of MMS
reaches 4. However, when over 4 MMS nodes are
participated, the linear scalability suffers from the
limitation of MMS nodes’ internal resources. To find
the probable causes of performance bottleneck, the
amount of CPU, network, disk, and memory used
are measured when the scalability curve reaches the
saturation point.

From our investigation, the usage of CPU in
each MMS node did not exceed 10% at maximum.
Thus, the CPU performance did not relate to the
nonlinear scalability over 4 MMS nodes.

In the aspect of network bandwidth, since all
MMS nodes and clients are connected to 100 Mbps
Ethernet switch, one MMS node could support
about 66 clients with 1.5 Mbps network bandwidth.
When 6 MMS nodes are employed, the total number
of clients is theoretically 396 streams. However, using
6 MMS nodes in Fig. 6, only 230 clients were mea-
sured with the Ice Age movie. To study the
limitation of network bandwidth, we divide MMS

250

227 230.2

218.8
zoo/./j_//-a 205

200 206.6 203
181.6
150

2
c
QL
5 132.8
“—
S} 131.4
(]
2 100
= 69
S
p=4 67.2

50

——Ice Age —#John Q|
0 s s s s s
1 2 3 4 5 6

Number of MMS nodes

Fig. 6. Performance scalability with increment of MMS nodes.

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 47

400

354.1
350 Olce Age

3271.0

w
o
o

267.1

n
aw
=]
n

250
200— —
150— —
100— —

Number of clients

(o))
o o

1X6 2X3 3X2 6 X1
Number of MMS nodes in a gourp X Number of Groups

Fig. 7. Performance under the sub-grouping configurations of
MMS node.

nodes into sub-groups loaded with the same movies.
Based on these sub-grouping configurations, we mea-
sure the maximum performance of each group. Fig. 7
shows the maximum performance under the several
sub-grouped configurations of MMS nodes. The best
performance is acquired on the 3 x 2 model. The for-
mer is the number of MMS nodes in one group and
the latter is total number of group. As shown in
Fig. 7, the 3 x 2 configuration model supports about
354 clients. The value is approximately close to the
maximum number of clients in our network capacity.
From these experiments, the network capacity in our
implemented VODCA system does not work as a
bottleneck to the linear performance scalability.

Each hard disk in the MMS node provides data
in 100 MB/s at maximum and could support 22—
41 MB/s continuously [12]. Since the hard disk
speed is superior to the network bandwidth, the disk
bandwidth is also not also the bottleneck in perfor-
mance scalability.

Our final consideration to find performance bot-
tlenecks is the memory capacity in our system. The
media_service module in MMS nodes uses a buffer
for each client stream. The buffer size is varied
according to size of two GOPs. The GOP size for
our movies is represented in Table 2. The buffer in
each process takes the major portion of memory
usage. From the experiment, we found that one
streaming service consumed about 1300-1500 KB
of memory in MMS nodes. Based on these observa-
tions, only 187-200 streams are supported in each
MMS node with 256 MB memory. From additional
experiments, we also found that the number of
memory swapping highly increased after the num-
ber of streams is over 200. Therefore, we confirm
that the memory usage of media_service module
could work as a reason for the nonlinear scalability
over 4 MMS nodes.

Table 4
Performance of the VODCA in the mixture requests

VCR 6 nodes x 1 group
function (number of streams)
rate

3 nodes x 2 groups
(number of streams)

0% 230.2 354.1
10% 239.0 378.2
20% 275.4 389.0
30% 279.2 319.0

4.2.2. Performance with VCR functions

Table 4 shows the maximum number of QoS
streams in the VODCA when the normal play and
VCR functions are mixed. The % item shows the
mixed rate of VCR function requests among total
streams. From these experiments, the higher mixed
rates, the better performances occur.

When handling the VCR functions, MMS nodes
transmit I frame of each GOP. The size of I frame
is smaller than the size of GOP. From Table 2, while
the average GOP size of the 2nd movie Ice Age is
120 Kbytes, the average I frame size is just 22.8 Kby-
tes. The size of I frame is smaller than GOP as much
as 6 times. Since the media_service module uses two
buffers for supporting one stream and the buffer size
is equal to the size of GOP, a normal play stream
requires 240 Kbytes buffer size but one VCR func-
tion stream needs 45 Kbytes buffer size. In conclu-
sion, the processes served for VCR functions
exhaust less buffer memory than other processes
supporting normal plays. Due to the reduced mem-
ory usage, it may be possible to increase the number
of total streams according as the mixed rates are
increased.

4.3. Client performance

In the client side, the memory usage is small but
the most CPU resources are exhausted due to
decoding the MPEG media in MPlayer. There is
about 1 s of delay when the player state is changed
from the normal play to VCR functions. The
extreme delay time comes from fast forward state
to fast rewind state, it takes about 3—4 s maximum.
The reason is due to both the delay of client request
transfers and the buffer refilling mechanism in MMS
nodes. The former is influenced by the polling per-
iod to find client’s request in the interface module
and the network delay for bypassing client requests
from HS node to the MMS nodes.

The buffer refilling problem is the time for flush-
ing the buffers and refilling into new movie data in

48 D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

MMS nodes. In addition to these reasons, the last
movie data remained in the client side aggravates
the delay time. To enhance the responsibility for cli-
ent requests, it is useful for avoiding the buffer
mechanism when treating the VCR requests as well
as the client’s network_receive module should per-
form immediate buffer flushing as soon as the
VCR function requests are issued.

5. Resource consumption-aware admission control

From the last section, the performance of the
VODCA system is studied on the limited internal
resources. To analyze the causes of performance
degradation, we measured the amount of resources
consumed for each QoS stream by exploiting the
monitoring functions. Within the implemented
VODCA system, it was clear that the main memory
caused the major bottleneck and the network band-
width did not affect the scalable performance
greatly. However, to get the scalable performance,
there were no burdens in the aspects of disk retriev-
ing and CPU computation ability. The result is from
the parallel disk retrieving and very low CPU con-
sumption in MMS nodes.

In VOD system, admission control is required to
guarantee the quality of media streaming while cli-
ents are being serviced. Based on the information
about the amount of resource consumptions, we pro-
pose a new admission control called as RCAAC
(Resource Consumption-Aware Admission Control)
in the cluster-based VOD servers. The RCAAC is
driven from the amount of available resources in
MMS nodes in addition to the actual amount of
resource consumed for guaranteeing one QoS
stream. Since the proposed method drags up the
utilization of system resources, the more QoS
streams can be provided. Table 5 shows the nota-

Table 5
Notations for resource consumption-aware admission control

M; Total memory of ith MMS node

m;; Memory usage of j movie in ith MMS node

N; Total network bandwidth of ith MMS

n; Network bandwidth usage of j movie in ith MMS node

S; Total system memory usage in ith MMS node

AM; Available memory of ith MMS node

AN; Available network bandwidth of ith MMS node

CM; Consumed memory for supporting a new movie stream in
ith MMS node

CN; Consumed network bandwidth for supporting a new
movie stream in ith MMS node

tions for our resource consumption-aware admission
control.

When a new movie is enrolled in the HS node, the
internal information for each movie is created for
parallel processing of MPEG movie. They include a
sequence number for each GOP, GOP size and I
frame size for each movie. Based on their informa-
tion, the actual amounts of resources consumed per
1 s are computed to the whole running time. In par-
ticular, since both the GOP size and I frame size influ-
ence building the streaming buffers in media_service
module, they have an impact upon the total memory
consumption. The pre-computed data are used to
aware the resource consumption for each QoS
stream. The data items are composed of m1; (mem-
ory usage for normal play state), m2;; (memory usage
for fast forward state), m3;; (memory usage for fast
reverse state), nl; (network usage for normal play
state), n2; (network usage for fast forward state),
n3; (network usage for fast reverse state). These 6
items signify the actual amount of consumed
resources for the QoS stream of 1 s. They are stored
in the HS node for our RCAAC algorithm.

For example, if the running time of one movie is
an hour, 3600 x 6 items are computed and stored
into the HS node. When a client request any arbi-
trary playing point of a movie A, the HS node deter-
mines the admission control for this new client
based on both the amount of available resources
in MMS nodes and the amount of resources con-
sumed for servicing the corresponding point of the
movie A. If the amounts of available resources are
bigger than those of resources exhausted by the
new client, the admission control algorithm in the
HS node accepts the new client. For example, if
the 1st MMS node runs the normal play to the
movie A, the memory usage is notated as ml .
After this new client is accepted, the item m; of
the Table 5 involves the m1; 4 to signify the amount
of memory consumption by the new normal play.
The next equations show the basic equations used
in the RCAAC

AM,; = {Mi—Si—Zm,-j—CMi}, (1)
AN,—Z{N,-—Znij—CNi}; (2)

where j denotes all movies running in ith MMS
node.

Based on the above Egs. (1) and (2), the HS node
computes the recent value of 4M; and AN, for each
MMS node per 1s. The update for these values is

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 49

performed whenever a new client is accessed and a
serviced movie is finished. The M; and N; is actual
memory capacities for each MMS node and S; is
easily obtained from resource monitoring tools in
the HS node.

The computation overheads for these equations
are small because the values of M;—3) m; and
N; — > ny;; for the current client are re-used for the
next new client. When a new client is arrived, the
results accumulated by the last client are exploited.
Thus, the substantial computation in two equations
is just the subtraction between CM; and CN; per
every client entrance. As a result, the overhead for
computing the two equations does not greatly affect
the performance of the HS node.

In addition to small CPU computation overhead,
the RCAAC does not require large memory space
for its data items. For example, when a movie has
two hours running time and 4 bytes integer is used,
the array structure has 7200 elements. The array size
is about 170 Kbytes (7200 x 4 bytes X 6 items). Even
though 100 movies are running simultaneously, only
17 Mbytes memory is needed for loading the array
structures. Furthermore, if the preference movies
depend on the Zipf distribution rule that follows
the Zipf’s Law, only the specific movies are inten-
sively demanded. In that case, since the array for
the same movies is re-used after the first time load-
ing, the retrieving overhead between disks and
memory is reduced.

// input: the number of request movie
// output: 1 or 0, 1 means admission,
but O means rejection
intResource Consumption Aware_Admis-
sion Control
(int movie_no) {
for (i =1; i <=number of MMS nodes;

i++)

{
CM[i]= the amount of memory
request for anew client;
CN[i]= the amount of memory
request for anew client;

}

if(the number of current

streams==0) // it is first access

{

for(i =1; 1 <=Number of MMS nodes;
i++)
{
AM[i]=M[i] —S[i] — CM[1i];

AN[i]=N[i] —CN[i];
Store AM[1],AN[i] into files;
}
return 1; // admission
}
read AM[1i], AN[i] from files;
for(i =1; i <=Number of MMS nodes;
i++)
{
AM[i] =AM[i] — S[i] — CM[i];
AN[i] =AN[i] — CN[1i];
If(AM[1i] <O0||AN[i] <O0)
return O; // rejection
}
Store AM[1], AN[i] into files;
return 1; // admission
}

The above source code shows the pseudo code
for internal algorithm of the RCAAC. The input
parameter is the number of request movie and the
return value is 1 or 0 (1 means the admission for a
new client and 0 means the rejection). This algo-
rithm is implemented into the VODCA system and
tested under the yardstick program.

Fig. 8 shows the total number of QoS streams
supported by the VODCA under RCAAC algorithm
and also points out the failed result of QoS under the
no admission control. As shown in this figure, when
the admission control does not consider, the number
of the QoS streams abruptly dropped after that
440 s. The reason is that the new clients added from
this point destroy the QoS of all clients currently
being serviced. However, under the VODCA with
the RCAAC, if the new clients have an negative
impact on the QoS for all clients, the RCAAC rejects
the request of new clients so that the VODCA system

250

— VODCA with no admission control

s e—

— VODCA with RCAAC / \\

| 1N
b

1 51 101 151 201 251 301 351 401 451 501 551
Time (sec)

[N
o
o

o
o

Number of Clients

0

Fig. 8. The number of QoS streams and the admission control.

50 D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

can guarantee the QoS of the currently serviced
streams. As shown in this figure, even if new clients
continuously arrive after that 440 s, the VODCA
with RCAAC sustains 213 QoS streams constantly.
Furthermore the CPU usage of HS that runs the
RCAAC is under 10%, because the its algorithm
complexity is simpler than others as shown following
equation.

f(nm) € O(m), 3)

where n denotes the number of concurrent users and
m denotes the number of nodes.

6. Relate work

Many research were undertaken for VOD sys-
tems to provide a stable service to more users
under the various user requirement features and
limited resources [13,14,16,19-21,23]. Many VOD
systems were implemented and studied for research
purposes or for commercial purposes [13,16-18,23].
There were several problems in the previous VOD
services. They did not support VCR like func-
tions and actual admission control mechanism in
implemented levels because the characteristics of
MPEG are passed over. In the actual VOD work-
ing environment, the anticipated performance suf-
fers from unexpected internally implemented skill
problems.

Much of previous research is focused on topics
related to a single video server design such as
disk striping, video block placement, and admis-
sion control at the level of disks and disk groups
[26]. Research in real-time networks, analyzing net-
work conditions for guaranteed services has been
discussed [26]. Research in distributed VOD sys-
tems focuses on load balancing schemes based on
replication and placement techniques [26].

The support of stable QoS in clustered VOD sys-
tem was studied in many areas. One of them focused
into real time schedules based on EDF but this
research did not consider the internal resource var-
iation for running the VOD service [22]. There
was a study into the way that the server assigns pri-
orities to each picture in MPEG data based on the
characteristics of MPEG [15]. In this paper, VOD
servers transmit ahead the picture frames with
higher priority according to service environments.
However, this approach incurred many overheads
for measuring the total information about running

movies and involved communication overheads
among multi-servers.

In addition, research were carried out into QoS
based on the effective memory management tech-
niques [27-29]. Since they have re-computed the
available memory amount every period for system
running, these overheads caused the performance
degradation accordingly as the number of servers
increased.

For control user admission, many research have
been discussed. Many statistical admission controls
have been researched. HRM policy that cannot
accept arbitrary sets of isochronous and guaran-
teed-service tasks for execution has been proposed
[1]. Three Random variable Admission Control
(TRAC) that models a comprehensive set of features
of real time storage and retrieval has been studied
[24]. Call Admission Control (CAC) Schemes have
been adopted to VOD server systems [1,25]. How-
ever these admission control schemes not only cause
a overhead of computing, but also do not consider
VCR-like functions, available resources or striping
media between nodes.

From previous research for VOD system, it is
clear that further study is needed for reducing the
internal overheads to support scalable performance
in cluster-based VOD servers. In addition to decreas-
ing overheads for measuring available resources in
internal servers, the various streaming modes like
to VCR functions should be supported in order com-
mercial VOD services to succeed. However, these
additional functions require the changing of MPEG
layers and incur the overheads for managing the spe-
cific picture frames.

Based on these research requirements for actual
VOD services, our research was focused on both
reducing overheads to get the internal resource
information and supporting the VCR functions to
clients.

7. Conclusion

For successful VOD systems, it is important to
provide QoS streams to more clients and a more user
friendly interface. In this paper, we studied the per-
formance issues for supporting QoS streams in clus-
ter-based VOD servers. Based on our implemented
VODCA system, the performance scalability is
investigated according to the number of MMS nodes
and various client demands including VCR func-
tions are supported. Experiments have shown that
a nonlinear scalability phenomenon occurred over

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52 51

the threshold points. To find out the causes of
performance bottleneck, the quantities of internal
resources consumed are measured on performance
saturation points. From the experiments, it was clear
that our limited memory capacity incurred the major
bottleneck and the network bandwidth had the pos-
sibility to have a negatively impact on the scalable
performance. However, there were no burdens in
the aspects of disk retrieval and CPU computation
ability to get the scalable performance. The reason
lies in the parallel disk retrieval and very low CPU
consumption in our MMS programs.

In VOD systems, a new client was not allowed that
affect the QoS of the currently serviced clients. To
guarantee stable QoS streams, we proposed a new
admission control called as RCAAC for the cluster-
based VOD servers. The RCAAC was based on the
amount of available resources in MMS nodes in
addition to the actual amount of resource consumed
for guaranteeing one QoS stream. The RCAAC
increased the utilization of system resources to pro-
vide more QoS streams. From the experiment, the
RCAAC rejected the new client request and guaran-
teed the QoS of the currently serviced streams, if
there is possibility of this request ruining QoS for
every serviced stream.

In our future work, we plan to evaluate the effec-
tiveness of RCAAC in more various streaming
media types. The different kinds of MPEG media
require the various amounts of resources consumed
in VOD services. We will also investigate the
method to detect the media type of the required
movies and automatically apply the RCAAC to
the different streaming media service.

References

[1] Dinkar Sitaram, Asit Dan, Multimedia Servers: Applica-
tions, Environments, and Design, Morgan Kaufman Pub-
lishers, 2000.

[2] W.C. Feng, M. Lie, Critical bandwidth allocation techniques
for stored video delivery across best-effort networks, in: The
20th International Conference on Distributed Computing
Systems, April 2000, 201-207.

[3] D.H.C. Du, Y.J. Lee, Scalable server and storage architec-
tures for video streaming, in: IEEE International Conference
on Multimedia Computing and Systems, June 1999, pp. 191-
206.

[4] K.R. Rao, J.J. Hwang, Techniques and Standards for Image,
Video, and Audio Coding, Prentice-Hall PTR, 1996.

[5] http://www.mpeg.org.

[6] Jung-Min Choi, Seung-Won Lee, Ki-Dong Chung, A
muticast delivery scheme for VCR operations in a large
VOD system, in: The 8th IEEE International Conference on

Parallel and Distributed Systems, June 26-29, 2001, pp. 555—
561.

[7] Gerard Beekmans, Linux From Scratch Version 3.3. Avail-
able from: <http://www.linuxfromscratch.org>.

[8] Tome Fawcett, The Linux Bootdisk HOWTO. Available
from: <http://www.tldp.org>.

[9] Qt/Embedded Whitepaper. Available from: <http://troll-
tech.com/products/embedded/>.

[10] http://mplayerhq.hu.

[11] Brian K. Schmidt, Monica S. Lam, J. Duane Northcutt, The
interactive performance of SLIM: a stateless, thin-client
architecture, in: ACM SOSP’99, 1999, pp. 31-47.

[12] http://www.seagate-asia.com/.

[13] Jim Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat
Rangan, Lawrence A. Rowe, Multimedia storage servers: a
tutorial, IEEE computer 28 (5) (1995) 40-49.

[14] Florin Lahan, Irek Defee, Marius Vlad, Aurelian Pop,
Prakash Sastry, Integrated system for multimedia delivery
over broadband ip networks, IEEE Transactions on Con-
sumer Electronics 48 (3) (2002) 564-565.

[15] Joseph Kee-Tin Ng, Calvin Kin-Cheung Hui, Wai Wong, A
multi-server design for a distributed MPEG video system
with streaming support and QoS control, in: IEEE RTCSA,
2000.

[16] Calvin K. Hui, Joseph K. Ng, Wai Wong, Karl R.P.H.
Leung, The implementation of a multi-server distributed
MPEG video system, in: IEEE RTAS, 2001.

[17] SuperNAVA. Available from: <http://archive.dstc.edu.au/
Supernova/>.

[18] VODKA. Available from: <http://vodka.lfcia.org/>.

[19] Sooyong Kang, Heon Y. Yeom, Modeling the caching effect
in continuous media servers, ACM Multimedia Tools and
Applications 21 (5) (2003) 203-224.

[20] Jack Y.B. Lee, Parallel video servers: a tutorial, IEEE
Multimedia (1998) 20-28.

[21] Prashant J. Shenoy, Pawan Goyal, Harrick M. Vin, Issue in
multimedia server design, ACM Computing Surveys 27 (4)
(1996) 636-639.

[22] Wanghong Yuan, Klara Nahrstedy, Kihun Jim, R-EDF: a
reservation-based EDF scheduling algorithm for multiple
multimedia task classes, in: IEEE RTAS, 2001.

[23] Craig S. Freedman, David J. DeWitt, The SPIFFI scalable
video-on-demand system, in: Proceedings of the 1995 ACM
SIGMOD International Conference on Management of
Data, 1995, pp. 352-363.

[24] Roger Zimmerman, Kun Fu, Comprehensive statistical
admission control for streaming media servers, in:
ACM International Conference on Multimedia, 2003,
pp. 75-85.

[25] Harry G. Perros, Khaled M. Elsayed, Call Admission
control schemes: a review, IEEE Communications Magazine
34 (11) (1996) 82-91.

[26] P. Mundur, R. Simon, A. Sood, Integrated admission
control in hierarchical video-on-demand systems, IEEE
Multimedia Systems (1999).

[27] Sang-Ho Lee, Kyu-Young Whang, Yang-Sae Moon, Wook-
Shin Han, Dynamic buffer allocation in video-on-demand
systems, IEEE Transactions on Knowledge and Data Engi-
neering 15 (6) (2003) 1535-1551.

[28] Nabil J. Sarhan, Chita R. Das, Caching and scheduling in
NAD-based multimedia servers, IEEE Transactions on
Parallel and Distributed Systems 15 (10) (2004) 921-933.

http://www.mpeg.org
http://www.linuxfromscratch.org
http://www.tldp.org
http://trolltech.com/products/embedded/
http://trolltech.com/products/embedded/
http://mplayerhq.hu
http://www.seagate-asia.com/
http://archive.dstc.edu.au/Supernova/
http://archive.dstc.edu.au/Supernova/
http://vodka.lfcia.org/

52

D. Seo et al. | Journal of Systems Architecture 53 (2007) 39-52

[29] Senthi Sengodan, Victor O.K. Li, A shared buffer Architec-
ture for Interactive VOD servers, in: INFOCOM’97, Six-
teenth Annual Joint Conference of the IEEE Computer and
Communication Societies, April 09-11, 1997, pp. 1341-1348.

., 1 |

Y R

% -
T, T

»a

-

d
L S

Dongmahn Seo received his B.E. and
M.E. degrees in Computer Engineering
and Computer Information and Tele-
communication Engineering from
Kangwon National University, in 2002
and 2004, respectively. He is currently a
Ph.D candidate in Computer Engineer-
ing at Kangwon National University.
His research interests include multimedia
system, parallel processing, embedded
system and wireless sensor network.

Joahyoung Lee received his B.E. and
M.E. degrees in Information and Tele-
communication Engineering and Com-
puter Information and Telecommu-
nication Engineering from Kangwon
National University, in 2003 and 2005,
respectively. He is currently a Ph.D
candidate in Computer Engineering
at Kangwon National University. His
research interests include multimedia
system, parallel processing, embedded

system and wireless sensor network.

Yoon Kim received his B.S., M.S., and
Ph.D. degrees in Electronic Engineering
from the Department of Electronic
Engineering, at Korea University, in
1993, 1995, and 2003, respectively. From
1995 to 1999, he was with the LG-Philips
LCD Co. where he was involved in
research and development on digital
image equipments. In 2004, he joined the
Department of Electrical and Computer
Engineering at Kangwon National Uni-

versity where he is currently an Assistant Professor. His research

interests are in the areas of video signal processing, multimedia
communications, and sensor network.

Chang Yeol Choi received his B.E. and
M.E. degrees from Kyungpook National
University, and the Ph.D. degree in
computer engineering from Seoul
National University. He was with ETRI
as a principal engineer responsible for a
computer system development from 1984
to 1996. His major interests are com-
puter system architecture, multimedia
systems, and mobile computing.

Manbae Kim received his B.S. degree
from Hanyang University, in 1983 and
the M.S. and Ph.D. degrees in Electrical
Engineering from University of Wash-
ington, Seattle in 1986 and 1991,
respectively. From 1991 to 1998, he was
with Samsung Advanced Institute of
Technology (SAIT), Korea. He is cur-
rently associate professor at Kangwon
National University. His research inter-
ests include MPEG-21, realistic broad-

casting system design and multi-view video processing.

Inbum Jung received his B.S. degree from
Korea University, in 1985 and the M.S.
and Ph.D. degrees in Computer Science
from KAIST, in 1994 and 2000, respec-
tively. From 1984 to 1995, he was with
Samsung Electronics Co. Ltd., Korea.
He is currently a faculty member at
Kangwon National University. His
research interests include operating sys-
tem, parallel processing, streaming
media and wireless sensor network.

	Resource consumption-aware QoS in cluster-based VOD servers
	Introduction
	Parallel processing of MPEG media
	Characteristics of MPEG media
	Striping and distribution for MPEG media
	VCR functions

	Architecture of the VODCA system
	Servers in the VODCA system
	Head-end Server (HS) node
	Media management server (MMS) node

	Clients in the VODCA system
	Software architecture for VOD clients
	VOD client with TV equipment

	Performance evaluation
	Experiment environment
	Server performance
	Performance under normal play requests
	Performance with VCR functions

	Client performance

	Resource consumption-aware admission control
	Relate work
	Conclusion
	References

