A Scalable and Highly Available Web Server

Daniel M. Dias William Kish* Rajat Mukherjee and Renu Tewari

IBM Research Division
T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598

{dias, clkish, rajatm, clrenu } Quatson.ibm.com

Abstract

We describe a prototype scalable and highly avail-
able web server, built on an IBM SP-2 system, and
analyze its scalability. The system architecture con-
sists of a set of logical front-end or network nodes and
a set of back-end or data nodes connected by a switch,
and a load balancing component. A combination of
TCP routing and Domain Name Server (DNS) tech-
niques are used to balance the load across the front-end
nodes that run the Web (hitpd) daemons. The scala-
bility achieved is quantified and compared with that of
the known DNS technique. The load on the back-end
nodes s balanced by striping the data objects across
the back-end nodes and disks. High availability is pro-
vided by detecting node or daemon failures and recon-
figuring the system appropriately. The scalable and
highly available web server is combined with parallel
databases, and other back-end servers, to provide in-
tegrated scalable and highly available solutions.

1 Introduction

With the explosion of traffic on the World Wide
Web [3, 12], the load on popular servers on the web
is increasing rapidly. In this paper we describe and
analyze various methods for building a scalable web
server on a cluster of computing nodes, in which the
throughput of the cluster can be increased by grow-
ing the size of the clustered system. We analyze the
limits to scalability and the efficiency of these meth-
ods, and the trade-offs between the alternatives. As
both the traffic and the commercial applications on
the popular web servers increases, high availability of
these servers becomes increasingly important. Given
a clustered web server, we describe how the server can
be made highly available, by taking over the load of
a failed node by the remaining nodes in the cluster.
Based on these methods, we describe a prototype of a
scalable and highly available web server that we have
built on an IBM Scalable Parallel SP-2 system.

*Consultant from Brown Cow Engineering Inc. He can be
reached at kish@browncow.com

1063-6390/96 $5.00 © 1996 IEEE
Proceedings of COMPCON °96

1.1 Relation to Previous Work

The NCSA prototype scalable HTTP server is de-
scribed in [8, 10]. The method they use, illustrated
in Figure 1, consists of having a set of HT'TP servers
on nodes in a cluster, that use the Andrew File Sys-
tem (AFS) [6] for sharing a set of HTML documents,
and using the round-robin Domain Name Server (RR-
DNS) [2, 13] for distributing accesses among the nodes
in the cluster. Essentially, clients are presented a sin-
gle name associated with the set of HT'TP servers, and
the RR-DNS maps this single name to the different IP
address of the HTTP servers, in a round-robin man-
ner; thus different clients will (ideally) be mapped to
different server nodes in the cluster. In this way, the
load is distributed among the servers, each of which
access the same set of URLs through the distributed
file system (AFS in this case).

Inl

Client caches
IP address

Nameserver can cache IP
address with a given TYL

Nameserver cen cache IP
address with a given TTL

Nameserver can cache 1 |
address with a given TTI

Difterent P
Addresses to
Different Clients

RR-DNS

1USTEHED WEB SERVER

Figure 1: Domain Name Server: Flow

There are several problems that arise with this
method. First, as illustrated in Figure 1, there are
typically several name servers between clients and the
RR-DNS that cache the resolved name-to-IP address

mapping. In order to force a mapping to different
server IP addresses, the RR-DNS can specify a time-
to-live (TTL) for a resolved name, such that requests
made after the specified TTL are not resolved in the
local nameserver, but are forwarded to the authori-
tative RR-DNS to be re-mapped to the IP address
of a different HTTP server. Multiple name requests
made during the TTL period will be mapped to the
same HTTP server. Thus, bursts of requests from new
clients can appear at the same HTTP server, leading
to significant load imbalance. If the TTL is made very
small, there is a significant increase in network traf-
fic for name resolution. Therefore, name servers of-
ten impose their own minimum TTL, and ignore very
small TTLs (e.g., 0) given by the RR-DNS. A second
problem is that clients cache the resolved name-to-
IP address mapping (henceforth referred to as address
caching). Since the clients may make future requests
at any time, the load on the HTTP servers cannot
be controlled subsequently and will vary due to sta-
tistical variations in client access patterns. Further,
clients make requests in bursts as each web page typ-
ically involves fetching several objects including text
and 1mages, and this burst is directed to a single server
node, increasing the skew. We show that these effects
can lead to significant dynamic load imbalance, requir-
ing that the cluster be operated at lower mean loads in
order to be able to handle peak loads. Another issue
relates to load balancing is the distributed file server
used by the HTTP servers. Typically, there is a skew
in the file accesses, with some URLs being more pop-
ular than others, leading to a skew in the file server
nodes. This becomes more significant when large doc-
uments are accessed and file system caching does not
suffice.

The remainder of the paper is organized as fol-
lows: In Section 2 we present a scheme that combines
the RR-DNS with a set of so called T'CP routers [14]
to better balance the load among the HTTP servers.
This combination also allows for better scalability. We
also describe a method that stripes the files across
(data server) nodes in the cluster [5, 4, 16] thereby
balancing the data access load. In Section 3, we quan-
titatively examine load balancing using the RR-DNS
approach, and quantify the performance and scalabil-
ity of the web server that we have prototyped. In
Section 4 we describe how high availability is achieved
in the prototype. Finally, concluding remarks appear
in Section 5.

2 Scalable Web Server Architectures
The scalable web server architecture is illustrated
in Figure 2, and consists of multiple web servers run-
ning on a clustered architecture. A clustered archi-
tecture consists of a group of nodes connected by a
fast interconnection network, such as a switch. Each
node in the cluster has a local disk array attached to
it. The disks of a node can either maintain a local
copy of the web documents or a share it among the
nodes. For better performance and load balancing,
the shared web documents are striped across multiple
nodes. As shown in Figure 2, the nodes of a cluster
are divided into two logical categories: (i) front-end

86

Figure 2: Scalable Web Server Architecture

(delivery) nodes and (ii) back-end (storage) nodes. A
load balancing component is used to distribute incom-
ing requests from the external network to the front-end
nodes, which also run httpd daemons. The (logical)
front-end node then forwards the required commands
to the back-end nodes that have the data (document),
using a shared file-system. We assume an underly-
ing software layer (e.g., virtual shared disk) which
makes the interconnection architecture transparent to
the nodes [1]. The results are then sent back from
the back-end node to the front-end node through the
switch and transmitted to the user.

The clustered architecture outline above can be ap-
plied to several applications, and is similar to the de-
sign of a scalable video server. Essentially, the same
architecture applies to a video server as well, with the
httpd daemon replaced by a daemon that reads video
objects, and plays them out to clients across the net-
work at the required rate. For both web and video
servers, two possible configurations can be used: (i)
two-tier and (ii) flat. In the two-tier architecture of
Figure 3, the logical front-end and back-end nodes are
mapped to different physical nodes of the cluster and
are distinct. In a flat architecture, on the other hand,
each physical node can serve as both the logical front-
end and back-end [16]. All nodes are identical, per-
forming both storage and delivery functions. For a
clustered web server we will principally consider the
two tier architecture only.

2.1 Load Balancing

A key requirement in order to achieve scalability of
the web server is that of balancing the load across the
multiple front-end nodes and the back-end nodes.

2.1.1 Front-End

The front-end nodes run the web daemons and are con-
nected to the external network. To balance the load
among them, the client requests need to be spread
evenly across nodes. Several methods can be used to

External @

Network
Connection
(ATM LINES)

Application-Specific
Software %

Front-End
Nodes E

Communication
Software

Virtua
Back-End -

Nodes
Physical

Connection

Figure 3: Two-tier Server Architectures

achieve this, with varying degrees of effectiveness. In
Section 1, we outlined the round-robin domain name
server (RR-DNS) based solution similar to the NCSA
approach. To summarize, in this scheme all the front-
end nodes are given a single logical name, and the RR-
DNS maps the name to multiple IP addresses. How-
ever, due to address caching in the client, the bursty
nature of client accesses, and TTL values imposed by
nameservers, the load balancing achieved is coarse, as
quantified in Section 3.

INTERNET

o J

Figure 4: Scalable Web Server (Router): Flow

Another method for achieving load balancing is
based on routing, and is illustrated in Figure 4. One or
more nodes of the cluster serve as TCP router(s), for-
warding client requests to the different front-end nodes
in the cluster in a round-robin order. The name and
IP address of the router is public, while the addresses
of the other nodes in the cluster is private. (If there
is more than one router node, a single name is used

87

and RR-DNS is used to map the name to the multiple
routers.) This has been referred to as the encapsulated
cluster in El4] The client sends requests to the router
node which in turn forwards all packets belonging to a
particular TCP connection to one of the server front-
end nodes. The router can use different algorithms
based on load to select which node to route to, or use
a simple round-robin scheme. In the prototype (see
below), the router resides just above the IP layer as a
kernel extension. The server nodes directly send the
request back to the client without using the router.
However, the server nodes change the source address
on the packets sent back to the client to be that of
the router node. This makes the entire routing action
transparent to the clients. Note that, the response
packets are large compared to the request packets, es-
pecially for images and video clips, and these bypass
the router. Thus, the overhead added by the router is
small (and is quantified later).

One advantage of the router scheme over the DNS
based solutions is that fine grained load balancing can
be achieved and there is no problem of client or name-
server caching. One potential issue with both the RR-
DNS and routing approaches is that the router node
could become a bottleneck, as could the domain name
server. These performance aspects are quantified in
Section 3.

To further improve scalability, the router and DNS
schemes can be combined in various ways. First, a
number of router nodes can be used, as shown in Fig-
ure 4, and the RR-DNS method can be used to map
different clients to different router nodes. This hybrid
scheme can tolerate the coarse grained load balanc-
ing achieved using RR-DNS because the correspond-
ing router will route any burst of requests, that were
mapped by the RR-DNS to the same router, to differ-
ent front-end server nodes. It achieves good scalability
because (i) a long TTL can be used so that the node
running the RR-DNS does not become a bottleneck,
and (ii) several router nodes can be used achieving
scaling beyond that of a single router.

Another hybrid router-DNS scheme combines the
logical router and front-end nodes: The DNS based
solution is used to get the coarse grained load bal-
ancing. FEach front-end server node then acts as a
router; if the load on the server is low, then the re-
quest is handled locally at that server, otherwise the
router forwards the request to another node based on
its load or a global load balancing algorithm. This
scheme eliminates the forwarding by the router unless
the load on the front-end node requires it.

2.1.2 Back-End

The back-end nodes function as the server nodes for
the shared file-system (e.g., AFS, NFS etc.) that is
used by the front-ends to access the data. For in-
stance, the NCSA prototype [8] uses AFS for the data
server. With traditional shared file systems, the to-
tal document set is partitioned among the different
back-end servers. The partitioned approach could lead
to load imbalances based on the access skew among
the documents. Back-end servers that store the hot

documents will get overloaded, resulting in hot spots.
The file-system caching at the front-end could allevi-
ate this problem for small documents that fit in the
local cache. Only the initial requests need to go to
the back-end server and the remaining can be serviced
from the local front-end cache. For larger documents,
however, the back-end server nodes will be unevenly
hit.

To balance the load among the back-end nodes dif-
ferent methods ranging from replication to striping
can be used. If the data is replicated across each back-
end nodes, the logical front-end and back-end can be
mapped to same physical node making it a flat archi-
tecture. The scheme described for front-end load bal-
ancing can be used directly. Full replication of data
is expensive in terms of space utilization. Also, if the
data is modified frequently, some form of consistency
control is required.

Instead of replication, each document is divided
into logical blocks, which are then distributed among
the disks in the system. The logical block represents
the size of the striping unit, and could be mapped
to multiple packets within the switch communication
layer and to multiple physical blocks on disk (we use
the term block, to refer to a logical block). The blocks
belonging to a document may either span all the disks
in the system (referred to as wide striping) or may
be confined to a smaller subset of disks (referred to
as short siriping). The block sizes are typically large
(> 64KB) to minimize the access latencies. Succes-
sive blocks of an object are allocated to consecutive
disks using a sequential placement. The shared file
system has additional support to access the striped
documents.

Wide striping implicitly achieves higher disk-arm
bandwidth and load balancing [5, 16]. However, small
documents on the server cannot be striped across all
the disks in the system. Such documents are striped
only on a subset of the disks in the system and repli-
cated on the remaining disks sets. Unlike short strip-
ing, however, in a server that employs wide striping, a
single disk or node failure affects all the streams being
accessed. Back-end node failures can be masked using
the availability schemes described in Section 4.

3 Performance and Scalability

In this section, we study the performance issues
relating to the scalability of cluster-based solutions
using the RR-DNS and router. The performance of
the RR-DNS was measured independently from that
of the web server. Web server performance was de-
rived from the Webstone benchmark [18], and the RR-
DNS performance was measured via a stand-alone RR-
DNS benchmark. Studies of the load imbalances using
the RR-DNS and router strategies were performed via
CSIM [15] simulations of a networked system.

3.1 Load Imbalance Due to Client and
Network Effects

We have qualitatively discussed the factors that af-

fect load balancing across nodes in Section 2. To quan-

titatively study the effect of dynamic load imbalance

we simulate a networked system and vary the number

88

of web page requests per client session, TTL at the
nameservers and the number of nodes in the server.
The simulation uses a burst model and a single level
of caching nameservers between the clients and the
server. For each page requested by a client a burst
of small requests, representing the objects within a
page, are sent to the server. Each client resolves the
name of the server only once during a session. The
number of remote nameservers is typically much larger
than the number of nodes in the server. We illustrate
the impact of the TTL with a single level of caching
nameservers. The simulation parameters are shown in
Table 1.

| Parameter [Default]
Number of Nodes 16
Number of Nameservers 150
Levels of Caching Nameservers 1
Clients per node 80
Server node capacity 50 req./sec
(requests are of the same size)
Mean interarrival time 15 secs.
(between page requests per client)
Mean number of bursts per page 10
Mean # of Page Requests/client session 20
TTL 300 secs.

Table 1: Simulation Parameters

Figure 5 shows the effect of varying the number of
requests per client session on the dynamic load im-
balance at the server for different TTL values at the
nameservers. Each request to the server is assumed
to be of the same size so that the load imbalance ob-
served is not due to varying request size. The dynamic
load imbalance is measured as a ratio of the maxi-
mum number (99% percentile) of requests serviced by
anode in any sampling interval to the mean computed
over the total simulation time period. (Note that,
both the RR-DNS and router schemes lead to good av-
erage load balance across the nodes over an extended
period of time. We focus on the dynamic load balance
which can lead to very different peak loads on nodes in
the cluster using the two schemes.) The inter-arrival
times between page requests per client session is de-
rived from an exponential distribution with a mean
of 15 seconds. For a TTL value of 0, as the mean
number of page requests per client session increases
from 1 to 20, the effect of client address caching be-
comes more pronounced, resulting in a load imbalance
increase from 8% to about 30%. Note, each page re-
quests consist of a burst of requests (mean of 10) to
the server. With an increase in the T'TL value from 0
to 300 seconds, without client address caching (num-
ber of page request per client is one), the load im-
balance increases from 8% to about 33%, sharply at
first and then gradual. The effect of increasing TTL
at the nameservers or that of increasing the duration
of a client session is adverse on the load imbalance

at the server nodes. The router approach results in a
much lower load imbalance of about 8% caused by the
bursty nature of client requests and random arrivals.

{Number of Nodes: 16)

e 144 -
$
% kb — e i s = e
E ---------- Werrvannansen [Beeooomocoees L R
=
8 —e—TTLO
2 --a-- TTL 10
Q124 --—-TTL 60 =
2 —-a-- TTL 300
s —-x-- ROUTER
&
......_.._.x....._..._.._)(-.._..._....x.__.._..._.._x.._.._..._..qf
10 e - | r
I 2 3 5 10 2
Number of Page Requests per Client S

Figure 5: Load Imbalance of RR-DNS

The load imbalance is also a function of the number
of nodes in the web server. As the number of nodes in-
creases the load imbalance using the router decreases.
Figure 6 shows the effect of varying the number of
nodes on the load imbalance using the RR-DNS and
router approaches. When the number of nodes is small
(e.g., 2) the load imbalance due to the bursty nature
of the requests and client random arrivals is high for
both the router (22%) and the RR-DNS (30%). As the
number of nodes increases, the effect diminishes for the
router as it forwards the requests to different nodes.
For the RR-DNS approach however, the load imbal-
ance due to client and nameserver address caching con-
tribute largely to the load imbalance and it gradually
increases (31%) as the nodes are increased. Thus, for
a large scale system a router based approach is recom-
mended as the load imbalance is significantly smaller
for the router than the DNS approach. For smaller
systems both approaches are viable. Also in the simu-
lation study each client randomly selects a nameserver,
whereas in practice some nameservers may be much
more utilized than others, causing larger imbalances
using the RR-DNS approach.

3.2 Scalability of RR-DNS and Router

Figure 7 shows the scalability achievable via the
RR-DNS solutions for different workloads gﬁle sizes)
for different ratios of new accesses to total accesses
made to the web server. The RR-DNS is accessed
only upon requests from new clients, since the address
of the web server node is cached at the client after the
first access. We varied the percentage of new accesses
from 100% (every access is from a new client) to 1% (a
client makes a hundred requests to the web site before
retiring). Since every document typically consists of
several constituent objects, the latter number reflects
a few pages accessed per client.

89

(Number of page requests per client session : 20)

ES
1
T

g
3
% P il LT - - - ———— s
£
I N —e— TTL 300
2 uﬁ R, -a--TTLO -
3 --+-- ROUTER
& R
e
''''' .
.....)
10 T . . e
2 4 é 116 312 64

Number of Nodes

Figure 6: Effect of System Size on Load Imbalance

Since each node can handle fewer requests per sec-
ond when the documents are large, we see that a single
RR-DNS can handle the request to a larger number of
server nodes when the average file size is larger. In
absolute terms, the RR-DNS scales to a large number
of nodes {100-200) even at smaller file sizes, assuming
tlllat 10-20% of the RR-DNS accesses are from new
clients.

Scaling of Nameserver [90% Util.] for Different File Sizes
10000 f — -

T T

100 Percent New Accesses —0—
20 Percent New Accesses —+--]
10 Percent New Accesses -E--]

5 Percent New Accesses - J
2 Percent New Accesses -4
1 Percent New Accesses —%--

1 10 100

Maximum Number of Web Server Nodes

1000
File Size (Kilobytes)

Figure 7: Scalability of RR-DNS

For the router, we measured the CPU utilization
during the execution of the Webstone benchmark with
four server nodes configured. For a given server
node at 90-95% utilization, the CPU utilization of
the router node is about 2.2% when the file-size is
small (1 KByte) and 1.2% for large files (1 MByte).
Thus, based on the average file size of the web server
workload, a single router node (operating at 90% uti-
lization) can support between 40 and 75 nodes, more
than sufficient for practical systems. Figure 8 shows

the scaling of a single router node for documents with
different file sizes. If larger configurations are desired,
multiple router nodes can be used, with load balanc-
ing across the routers being achieved via RR-DNS. As
shown in section 3.1, the router solution has better
load balancing properties compared to the RR-DNS
solution.

Scaling of Router [90% Util.] for Different File Sizes

—rrT T ——rrrTr

90

70

-

60

e

Maximum Number of Web Server Nodes

50 |- .
40§ -
30 -1
20 |- Server Nodes Per Router Node <—
10 L- -
PRy PRI B P

1 10 100 1000

File Size (Kilobytes)

Figure 8: Scalability of a Single Router Node

4 High Availability

Figure 9: High Availability

As the traffic and commercial applications on pop-
ular web servers increase, providing highly available
web servers becomes increasingly important. One of
the advantages of a clustered system is the possibil-
ity of providing high availability by masking node and
other failures. This is done by detecting failures and
reconfiguring the system such that the workload is
taken over by the remaining nodes in the cluster. For
the scalable web server, in order to guarantee high
availability, we need to mask both front-end and back-
end node failure. The method we use for making the

90

web server highly available is illustrated in Figure 9.

Node failures are detected by using a heart-beat and
membership protocol [7], that essentially eliminates
nodes from the membershlp group in a consistent man-
ner when (several) heartbeat messages from the node
are not received. Network failures are detected by us-
ing heartbeats on multiple networks. Other resource
failures are detected by monitors. On detection of
node or other resource failures, a distributed recovery
driver component [11] initiates recovery by coordinat-
ing a series of recovery commands or scripts across the
remaining nodes in the system. The actions taken for
specific failures is outlined below.

For front-end node failure, if the DNS or router so-
lution is used for load balancing, the failed node is re-
moved from either the name server tables or the router
configuration table. Once these tables are updated to
reflect the failure, all remote clients that try to make
a connection after the failure will not be directed to
the failed node. However, in the DNS approach some
clients may have cached the address of the failed node
and will continue to try connecting to it. Similarly,
with the router based approach a router node may
fail causing clients to see a failure. To handle these
scenarios each front-end node and router node has a
“buddy” which takes over its IP address after failure.
Remote clients that have cached the address of the
failed node will connect to the buddy transparently.
For IP takeover the nodes have a redundant adapter.
One of the adapters is used for servicing all the exter-
nal IP requests and one for booting. The IP address
of the main adapter is taken over by a spare adapter
in the buddy node. The switching is done in software
and is orchestrated by the recovery driver, as outlined
earlier.

To handle the back-end server failure we use a hard-
ware approach, namely twin-tailed disks. Other ap-
proaches like replication and software-RAID can be
used for large scale servers with real-time require-
ments [17]. The disks attached to a node are twin-
tailed to a buddy node. When a node fails the buddy
node takes over the disk. The front-end nodes forward
the requests to the buddy. Twin-tailing requires ei-
ther special disks or extra SCSI adapters on the nodes
that connect to the shareable disks. With twin-tailing
the load on the buddy can double in the worst case.
Multi-tailing can reduce the overload to some extent.

5 Conclusions and Future Work

Based on the analysis and design described above
we have built a prototype scalable and highly avail-
able web server on an IBM SP2 system, illustrated
in Figure 10. This system is essentially an instanti-
ation of the architecture shown in Figure 2, and is a
two-tier system with four front-end and four back-end
nodes. The disks are connected to the back-end nodes.
The disks are (logically) shared among the front-end
nodes using the Virtual Shared Disk software [1]. The
data for web files are striped across the back-end nodes
and disks, thereby achieving load balancing across the
back-end nodes based on work by [4]. The combina-
tion of the TCP router and RR-DNS described earlier
is used for load balancing across HT'TP daemons run-

ning at the front-end nodes. The TCP router is based
on the encapsulated cluster prototype [14]. The scala-
bility data presented in Section 3 is based on measure-
ments on the prototype. The methods for achieving
high availability outlined in the previous section have
been implemented in the prototype.

The hardware and software infrastructure is shared
between the scalable web server and a prototype scal-
able video server: the video objects are striped across
the same nodes and disks, the HTTP daemons are re-
placed by video push daemons, and load balancing is
achieved by a control server [9] that assigns the client
streams to front-end nodes. We present forms with
video selections on the web, and allow the web client
to start up (out of band) play-out of video objects over
separate high bandwidth channels. Currently, the con-
strained bandwidth to the client and also in the net-
work prevent any significant real-time video access on
the web. Over time, we believe that real-time video
over the web will become feasible; the prototype’s abil-
ity to support scalability for both web and video will
then become increasingly important.

SP SWITCH

Figure 10: SP Video and Web Server Prototype

We quantified the scalability of this solution, and
examined the performance of the (known) RR-DNS
approach. We showed through simulations that the
pure DNS approach can be significantly impacted by
dynamic load imbalance among the nodes in the clus-
ter. As a specific example, due to client caching of
the mapping from the name to IP address, the peak
load on nodes in the cluster can be 30% to 40% higher
than the mean load on the nodes, because bursts of
requests from clients lead to dynamic load imbalance.
With higher values of the TTL at nameservers, the
load dynamic load imbalance with RR-DNS gets even
worse. 'This means that, using RR-DNS, the cluster
nodes would need to be configured such that the mean
load is less than 60% in order to be able to sustain the
peak loads that occur. We showed that the router
solution largely eliminates this problem, and provides
excellent dynamic load balancing; this allows the clus-

91

ter nodes to operate at much higher mean loads, and
still sustain the peak loads.

Figure 11: Integrated Scalable Solutions

In this paper we have focused on a scalable and
highly available web server, with web pages stored on
a shared file system. For many applications, access to
back-end servers such as databases and on-line trans-
action processing via the web is required. The scal-
able web server described above can be integrated with
parallel/scalable back-end servers, to create integrated
scalable solutions, as illustrated in Figure 11. The fig-
ure illustrates the scalable web-server integrated in our
prototype with a scalable video server and a parallel
database, all in one management and high-availability
domain.

Acknowledgments: The prototype draws on com-
ponents developed by many people, especially C. R.
Attanasio, S.C. Smith, C. Polyzois, R. Haskin, D. Mc-
Nabb, F. Schmuck, J. Wyllie, M. Devarakonda and S.
Fakhouri.

References
[1] C.R. Attanasio, M. Butrico, C.A. Polyzois, S.E.
Smith, and J.L. Peterson. Design and Implemen-
tation of a Recoverable Virtual Shared Disk. IBM
Research Report RC 19843, T.J Watson Research
Center, Yorktown Heights, New York, 1994.

T. Brisco. DNS Support for Load Balancing. RFC
1794, Rutgers University, April 1995.

Berners-Lee T. et al. The World-Wide Web.
Commaunications of the ACM, 37(8):76 — 82, Au-
gust 1994.

(2]

Roger Haskin. Personal Communication, 1994.

Roger Haskin and Frank L. Stein. A System for
Delivery of Interactive Television Programming.

In COMPCON. IEEE, March 1995.

J.H. Howard, M.L. Kazar, S.G. Menees, D.A.
Nichols, M. Satyanarayanan, R.N. Sidebotham,
and M.J. West. Scale and Performance in a

(9]
[10]

Distributed File System. ACM Transactions on
Computer Systems, 6(1), February 1988.

F. Jahanian, S. Fakhouri, and R. Rajkumar.
Processor Group Membership Protocols: Speci-
fication, Design and Implementation. In Proceed-
ings of the 12th Symposium on Reliable Distrib-
uted Systems, pages 2 — 11, Princeton, NJ, Octo-
ber 1993. IEEE Computer Society.

Eric Dean Katz, Michelle Butler, and Robert Mc-
Grath. A Scalable HTTP Server: The NCSA Pro-
totype. Computer Networks and ISDN Sytems,
27:155 — 163, 1994.

Martin Kienszle. Personal Communication, 1995.

Thomas T. Kwan, Robert E. McGrath, and
Daniel A. Reed. Ncsa’s world wide web server:
Design and performance. IEEE Computer, pages
68 — 74, November 1995.

Avraham Leff, Richard P. King, and Daniel M.
Dias. HAV: Infrastructure for Building Highly
Available Clustered Systems. In Preparation,
1996.

Robert E. McGrath. What We Do and Don’t
Know

About the Load on the NCSA WWW Server.
URL < http://www.ncsa.uiuc.edu/ Information-
Servers/Colloquia/28.Sep.94/ Begin.html>, Sep-
tember 1994.

P. Mockapetris. Domain Names - Implementation
and Specification. RFC 1035, USC Information
Sciences Institute, November 1987.

Attanasio C. R. and Smith S.E. (a virtual multi-
processor implemented by an encapsulated clus-
ter of loosely coupled computers). IBM Research
Report RC18442, 1992.

Herb Schwetman. CSIM Reference Manual (Re-
vision 16). MCC Technical Report ACT-ST-252-
87, Microelectronics and Computer Technology
Corporation, Austin, Texas 78759, May 1992.

Renu Tewari, Daniel M. Dias, Rajat Mukherjee,
and Harrick Vin. Real-Time Issues for Clustered
Multimedia Servers. IBM Research Report RC
20020, T.J. Watson Research Center, April 1995.

Renu Tewari, Rajat Mukherjee, Daniel Dias, and
Harrick Vin. High Availablity in Clustered Mul-
timedia Servers. In International Conference on
Data Engineering, New Orleans, February 1996.
IEEE.

Gene Trent and Mark Sake. WebSTONE: The
First Generation in HTTP Server Benchmark-
ing. URL < http://www.sgi.com/Products/
WebFORCE/WebStone/paper.html >, February
19895,

92

